
Code Pointer Masking: Hardening Applications
against Code Injection Attacks

Pieter Philippaerts1, Yves Younan1, Stijn Muylle1, Frank Piessens1, Sven
Lachmund2, and Thomas Walter2

1 DistriNet Research Group
2 DOCOMO Euro-Labs

Abstract. In this paper we present an efficient countermeasure against
code injection attacks. Our countermeasure does not rely on secret val-
ues such as stack canaries and protects against attacks that are not ad-
dressed by state-of-the-art countermeasures of similar performance. By
enforcing the correct semantics of code pointers, we thwart attacks that
modify code pointers to divert the application’s control flow. We have
implemented a prototype of our solution in a C-compiler for Linux. The
evaluation shows that the overhead of using our countermeasure is small
and the security benefits are substantial.

1 Introduction

A major goal of an attacker is to gain control of the computer that is being
attacked. This can be accomplished by performing a so-called code injection
attack. In this attack, the attacker abuses a bug in an application in such a
way that he can divert the control flow of the application to run binary code
— known as shellcode — that the attacker injected in the application’s memory
space. The most basic code injection attack is a stack-based buffer overflow that
overwrites the return address, but several other — more advanced — attack
techniques have been developed, including heap based buffer overflows, indirect
pointer overwrites, and others. All these attacks eventually overwrite a code
pointer, i.e. a memory location that contains an address that the processor will
jump to during program execution.

According to the NIST’s National Vulnerability Database [1], 9.86% of the
reported vulnerabilities are buffer overflows, second to only SQL injection attacks
(16.54%) and XSS (14.37%). Although buffer overflows represent less than 10%
of all attacks, they make up 17% of the vulnerabilities with a high severity rating.

Code injection attacks are often high-profile, as a number of large software
companies can attest to. Apple has been fighting off hackers of the iPhone since it
has first been exploited with a code injection vulnerability in one of the iPhone’s
libraries3. Google saw the security of its sandboxed browser Chrome breached4

3 CVE-2006-3459.
4 CVE-2008-6994.



because of a code injection attack. And an attack exploiting a code injection vul-
nerability in Microsoft’s Internet Explorer5 led to an international row between
Google and the Chinese government. This clearly indicates that even with the
current widely deployed countermeasures, code injection attacks are still a very
important threat.

In this paper we present a new approach, called Code Pointer Masking
(CPM), for protecting against code injection attacks. CPM is very efficient and
provides protection that is partly overlapping with but also complementary to
the protection provided by existing efficient countermeasures.

By efficiently masking code pointers, CPM constrains the range of addresses
that code pointers can point to. By setting these constraints in such a way
that an attacker can never make the code pointer point to injected code, CPM
prevents the attacker from taking over the computer.

In summary, the contributions of this paper are:

– It describes the design of a novel countermeasure against code injection
attacks on C code.

– It reports on a prototype implementation for the ARM architecture that
implements the full countermeasure. A second prototype for the Intel x86
architecture exists, but is not reported on in this paper because of page limit
constraints and because it is still incomplete. It does, however, show that the
concepts can be ported to different processor architectures.

– It shows by means of the SPEC CPU benchmarks that the countermeasure
imposes an overhead of only a few percentage points and that it is compatible
with existing large applications that exercise almost all corners of the C
standard.

– It provides an evaluation of the security guarantees offered by the counter-
measure, showing that the protection provided is complementary to existing
countermeasures.

The paper is structured as follows: Section 2 briefly describes the technical
details of a typical code injection attack. Section 3 discusses the design of our
countermeasure, and Section 4 details the implementation aspects. Section 5
evaluates our countermeasure in terms of performance and security. Section 6
further discusses our countermeasure and explores the ongoing work. Section 7
discusses related work, and finally Section 8 presents our conclusions.

2 Background: Code Injection Countermeasures

Code injection attacks have been around for decades, and a lot of countermea-
sures have been developed to thwart them. Only a handful of these countermea-
sures have been deployed widely, because they succeed in raising the bar for the
attacker at only a small (or no) performance cost. This section gives an overview
of these countermeasures.
5 CVE-2010-0249.



Stack Canaries try to defeat stack-based buffer overflows by introducing a se-
cret random value, called a canary, on the stack, right before the return address.
When an attacker overwrites a return address with a stack-based buffer over-
flow, he will also have to overwrite the canary that is placed between the buffer
and the return address. When a function exits, it checks whether the canary has
been changed, and kills the application if it has.

ProPolice [2] is the most popular variation of the stack canaries countermea-
sure. It reorders the local variables of a function on the stack, in order to make
sure that buffers are placed as close to the canary as possible. However, even
ProPolice is still vulnerable to information leakage [3], format string vulnerabil-
ities [4], or any attack that does not target the stack (for example, heap-based
buffer overflows). It will also not emit the canary for every function, which can
lead to vulnerabilities6.

Address Space Layout Randomization (ASLR, [5]) randomizes the base
address of important structures such as the stack, heap, and libraries, making
it more difficult for attackers to find their injected shellcode in memory. Even if
they succeed in overwriting a code pointer, they will not know where to point it
to.

ASLR raises the security bar at no performance cost. However, there are
different ways to get around the protection it provides. ASLR is susceptible
to information leakage, in particular buffer-overreads [3] and format string vul-
nerabilities [4]. On 32-bit architectures, the amount of randomization is not
prohibitively large [6], enabling an attacker to correctly guess addresses. New
attacks also use a technique called heap-spraying [7]. Attackers pollute the heap
by filling it with numerous copies of their shellcode, and then jump to somewhere
on the heap. Because most of the memory is filled with their shellcode, there is a
good chance that the jump will land on an address that is part of their shellcode.

Non-executable memory is supported on most modern CPUs, and allows
applications to mark memory pages as non-executable. Even if the attacker can
inject shellcode into the application and jump to it, the processor would refuse
to execute it. There is no performance overhead when using this countermeasure,
and it raises the security bar quite a bit. However, some processors still do not
have this feature, and even if it is present in hardware, operating systems do not
always turn it on by default. Linux supports non-executable memory, but many
distributions do not use it, or only use it for some memory regions. A reason for
not using it, is that it breaks applications that expect the stack or heap to be
executable.

But even applications that use non-executable memory are vulnerable to
attack. Instead of injecting code directly, attackers can inject a specially crafted
fake stack. If the application starts unwinding the stack, it will unwind the fake
stack instead of the original calling stack. This allows an attacker to direct the
processor to arbitrary functions in libraries or program code, and choose which

6 CVE-2007-0038



parameters are passed to these functions. This type of attack is referred to as a
return-into-libc attack [8]. A related attack is called return-oriented programming
[9], where a similar effect is achieved by filling the stack with return addresses to
specifically chosen locations in code memory that execute some instructions and
then perform a return. Other attacks exist that bypass non-executable memory
by first marking the memory where they injected their code as executable, and
then jumping to it [10].

Control Flow Integrity (CFI, [11]) is not a widely deployed countermeasure,
but is discussed here because it is the countermeasure with the closest relation
to CPM. CFI determines a program’s control flow graph beforehand and ensures
that the program adheres to it. It does this by assigning a unique ID to each
possible control flow destination of a control flow transfer. Before transferring
control flow to such a destination, the ID of the destination is compared to
the expected ID, and if they are equal, the program proceeds as normal. CFI
has been formally proven correct. Hence, under the assumptions made by the
authors, an attacker will never be able to divert the control flow of an application
that is protected with CFI.

CFI is related to CPM in that both countermeasures constrain the control
flow of an application, but the mechanisms that are used to enforce this are
different. The evaluation in Section 5 shows that CFI gives stronger guarantees,
but the model assumes a weaker attacker and its implementation is substantially
slower.

3 Code Pointer Masking

Existing countermeasures that protect code pointers can be roughly divided into
two classes. The first class of countermeasures makes it hard for an attacker to
change specific code pointers. An example of this class of countermeasures is Mul-
tistack [12]. In the other class, the countermeasures allow an attacker to modify
code pointers, but try to detect these changes before any harm can happen. Ex-
amples of such countermeasures are stack canaries [13], pointer encryption [14]
and CFI [11]. These countermeasures will be further explained in Section 7.

This section introduces the Code Pointer Masking (CPM) countermeasure,
located somewhere between those two categories of countermeasures. CPM does
not prevent overwriting code pointers, and does not detect memory corruptions,
but it makes it hard or even impossible for an attacker to do something useful
with a code pointer.

3.1 General Overview

CPM revolves around two core concepts: code pointers and pointer masking. A
code pointer is a value that is stored in memory and that at some point in the
application’s lifetime is copied into the program counter register. If an attacker
can change a code pointer, he will also be able to influence the control flow of
the application.



CPM introduces masking instructions to mitigate the effects of a changed
code pointer. After loading a (potentially changed) code pointer from memory
into a register, but before actually using the loaded value, the value will be
sanitized by combining it with a specially crafted and pointer-specific bit pattern.
This process is called pointer masking.

By applying a mask, CPM will be able to selectively set or unset specific
bits in the code pointer. Hence, it is an efficient mechanism to limit the range of
addresses that are possible. Any bitwise operator (e.g. AND, OR, BIC (bit clear
— AND NOT), ...) can be used to apply the mask on the code pointer. Which
operator should be selected depends on how the layout of the program memory
is defined. On Linux, using an AND or a BIC operator is sufficient. Even though
an application may still have buffer overflow vulnerabilities, it becomes much
harder for the attacker to exploit them in a way that might be useful.

The computation of the mask is done at link time, and depends on the type
of code pointer. For instance, generating a mask to protect the return value
of a function differs from generating a mask to protect function pointers. An
overview of the different computation strategies is given in the following sections.
The masks are not secret and no randomization whatsoever is used. An attacker
can find out the values of the different masks in a target application by simply
compiling the same source code with a CPM compiler. Knowing the masks will
not aid the attacker in circumventing the masking process. It can, however, give
the attacker an idea of which memory locations can still be returned to. But
due to the narrowness of the masks (see Section 5.1), it is unlikely that these
locations will be interesting for the attacker.

3.2 Assumptions

The design of CPM provides protection even against powerful attackers. It is,
however, essential that two assumptions hold:

1. Program code is non-writable. If the attacker can arbitrarily modify program
code, it is possible to remove the masking instructions that CPM adds. This
defeats the entire masking process, and hence the security of CPM. Non-
writable program code is the standard nowadays, so this assumption is more
than reasonable.

2. Code injection attacks overwrite a code pointer eventually. CPM protects
code pointers, so attacks that do not overwrite code pointers are not stopped.
However, all known attacks that allow an attacker to execute arbitrary code
overwrite at least one code pointer.

3.3 Masking the Return Address

The return address of a function is one of the most popular code pointers that
is used in attacks to divert the control flow. Listing 1.1 shows the sequence of
events in a normal function epilogue. First, the return address is retrieved from
the stack and copied into a register. Then, the processor is instructed to jump to



the address in the register. Using for instance a stack based buffer overflow, the
attacker can overwrite the return address on the stack. Then, when the function
executes its epilogue, the program will retrieve the modified address from the
stack, store it into a register, and will jump to an attacker-controlled location in
memory.

Listing 1.1. A normal function epilogue.
[ get re turn address from stack ]
[ jump to t h i s address ]

CPM mitigates this attack by inserting a masking instruction inbetween,
as shown in Listing 1.2. Before the application jumps to the code pointer, the
pointer is first modified in such a way that it cannot point to a memory location
that falls outside of the code section.

Listing 1.2. A CPM function epilogue.
[ get re turn address from stack ]
[ apply bitmask on address ]
[ jump to t h i s masked address ]

The mask is function-specific and is calculated by combining the addresses
of the different return sites of the function using an OR operation. In general,
the quality of a return address mask is proportional to the number of return
sites that the mask must allow. Hence, fewer return sites results on average in
a better mask. As the evaluation in Section 5.2 shows, it turns out that most
functions in an application have only a few callers.

However, the quality is also related to how many bits are set in the actual
addresses of the return sites, and how many bits of the different return addresses
overlap. Additional logic is added to the compiler to move methods around, in
order to optimize these parameters.

Example Assume that we have two methods M1 and M2, and that these meth-
ods are the only methods that call a third method M3. Method M3 can re-
turn to a location somewhere in M1 or M2. If we know during the compila-
tion of the application that these return addresses are located at memory loca-
tion 0x0B3E (0000101100111110) for method M1 and memory location 0x0A98
(0000101010011000) for method M2, we can compute the mask of method M3
by ORing the return sites together. The final mask that will be used is mask
0x0BBE (0000101110111110).



By ANDing this generated mask and the return address, the result of this op-
eration is limited to the return locations in M1 and M2, and to a limited number
of other locations. However, most of the program memory will not be accessible
anymore, and all other memory outside the program code section (for example,
the stack, the heap, library memory, . . . ) will be completely unreachable.

3.4 Masking Function Pointers

It is very difficult to statically analyze a C program to know beforehand which
potential addresses can be called from some specific function pointer call. CPM
solves this by overestimating the mask it uses. During the compilation of the
program, CPM scans through the source code of the application and detects for
which functions the address is taken, and also detects where function pointer
calls are located. It changes the masks of the functions that are called to ensure
that they can also return to any return site of a function pointer call. In addition,
the masks that are used to mask the function pointers are selected in such a way
that they allow a jump to all the different functions whose addresses have been
taken somewhere in the program. As Section 5.1 shows, this has no important
impact on the quality of the masks of the programs in the benchmark.

The computation of the function pointer mask is similar to the computation
of the return address masks. The compiler generates a list of functions whose
addresses are taken in the program code. These addresses are combined using
an OR operation into the final mask that will be used to protect all the function
pointer calls.

A potential issue is that calls of function pointers are typically implemented
as a JUMP <register> instruction. There is a very small chance that if the
attacker is able to overwrite the return address of a function and somehow in-
fluence the contents of this register, that he can put the address of his shellcode
in the register and modify the return address to point to this JUMP <register>
instruction. Even if this jump is preceded by a masking operation, the attacker
can skip this operation by returning to the JUMP instruction directly. Although
the chances for such an attack to work are extremely low (the attacker has to be
able to return to the JUMP instruction, which will in all likelihood be prevented
by CPM in the first place), CPM specifically adds protection to counter this
threat.

The solutions to this problem depends from architecture to architecture. For
example, CPM can reserve a register that is used exclusively to perform the
masking of code pointers. This will make sure that the attacker can never in-
fluence the contents of this register. The impact of this particular solution will
differ from processor to processor, because it increases the register pressure.
However, as the performance evaluation in Section 5.1 shows, on the ARM ar-
chitecture this is a good solution. And because both the Intel 64 and AMD64
architectures sport additional general purpose registers, a similar approach can
be implemented here as well.



3.5 Masking the Global Offset Table

A final class of code pointers that deserves special attention are entries in the
global offset table (GOT). The GOT is a table that is used to store offsets to
objects that do not have a static location in memory. This includes addresses of
dynamically loaded functions that are located in libraries.

At program startup, these addresses are initialized to point to a helper
method that loads the required library. After loading the library, the helper
method modifies the addresses in the GOT to point to the library method di-
rectly. Hence, the second time the application tries to call a library function, it
will jump immediately to the library without having to go through the helper
method.

Overwriting entries in the GOT by means of indirect pointer overwriting is a
common attack technique. By overwriting addresses in the GOT, an attacker can
redirect the execution flow to his shellcode. When the application unsuspectedly
calls the library function whose address is overwritten, the attacker’s shellcode
is executed instead.

Like the other code pointers, the pointers in the GOT are protected by mask-
ing them before they are used. Since all libraries are loaded into a specific memory
range (e.g. 0x4NNNNNNN on 32-bit Linux), all code pointers in the GOT must
either be somewhere in this memory range, or must point to the helper method
(which is located in the program code memory). CPM adds instructions that
ensure this, before using a value from the GOT.

3.6 Masking Other Code Pointers

CPM protects all code pointers in an application. This section contains the code
pointers that have not been discussed yet, and gives a brief explanation of how
they are protected.

On some systems, when an application shuts down it can execute a number
of so-called destructor methods. The destructor table is a table that contains
pointers to these methods, making it a potential target for a code injection
attack. If an attacker is able to overwrite one of these pointers, he might redirect
it to injected code. This code will then be run when the program shuts down.
CPM protects these pointers by modifying the routine that reads entries from
the destructor table.

Applications might also contain a constructor table. This is very similar to
the destructor table, but runs methods at program startup instead of program
shutdown. This table is not of interest to CPM, because the constructors will
have already executed before an attacker can start attacking the application and
the table is not further used.

The C standard also offers support for long jumps, a feature that is used
infrequently. A programmer can save the current program state into memory,
and then later jump back to this point. Since this memory structure contains the
location of where the processor is executing, it is a potential attack target. CPM
protects this code pointer by adding masking operations to the implementation
of the longjmp method.



4 Implementation

This section describes the implementation of the CPM prototype for the ARM
architecture. It is implemented in gcc-4.4.0 and binutils-2.20 for Linux. For GCC,
the machine descriptions are changed to emit the masking operations during the
conversion from RTL7 to assembly. The implementation provides the full CPM
protection for return addresses, function pointers, GOT entries, and the other
code pointers.

4.1 Function Epilogue Modifications

Function returns on ARM generally make use of the LDM instruction. LDM, an
acronym for ‘Load Multiple’, is similar to a POP instruction on x86. But instead
of only popping one value from the stack, LDM pops a variable number of values
from the stack into multiple registers. In addition, the ARM architecture also
supports writing directly to the program counter register. Hence, GCC uses a
combination of these two features to produce an optimized epilogue. Listing 1.3
shows what this epilogue looks like.

Listing 1.3. A function prologue and epilogue on ARM.
stmfd sp ! , {< r e g i s t e r s >, fp , l r }
. . .
ldmfd sp ! , {< r e g i s t e r s >, fp , pc}

The STMFD instruction stores the given list of registers to the address that is
pointed to by the sp register. <registers> is a function-specific list of registers
that are modified during the function call and must be restored afterwards.
In addition, the frame pointer and the link register (that contains the return
address) are also stored on the stack. The exclamation mark after the sp register
means that the address in the register will be updated after the instruction to
reflect the new top of the stack. The ‘FD’ suffix of the instruction denotes in
which order the registers are placed on the stack.

Similarly, the LDMFD instruction loads the original values of the registers back
from the stack, but instead of restoring the lr register, the original value of this
register is copied to pc. This causes the processor to jump to this address, and
effectively returns to the parent function.

Listing 1.4 shows how CPM rewrites the function epilogue. The LDMFD in-
struction is modified to not pop the return address from the stack into PC.
Instead, the return address is popped off the stack by the subsequent LDR in-
struction into the register r9. We specifically reserve register r9 to perform all

7 RTL or Register Transfer Language is one of the intermediate representations that
is used by GCC during the compilation process.



Listing 1.4. A CPM function prologue and epilogue on ARM.
stmfd sp ! , {< r e g i s t e r s >, fp , l r }
. . .
ldmfd sp ! , {< r e g i s t e r s >, fp }
l d r r9 , [ sp ] , #4
b i c r9 , r9 , #0xNN000000
b i c r9 , r9 , #0xNN0000
b i c r9 , r9 , #0xNN00
b i c pc , r9 , #0xNN

the masking operations of CPM. This ensures that an attacker will never be able
to influence the contents of the register, as explained in Section 3.4.

Because ARM instructions cannot take 32-bit operands, we must perform
the masking in multiple steps. Every bit-clear (BIC) operation takes an 8-bit
operand, which can be shifted. Hence, four BIC instructions are needed to mask
the entire 32-bit address. In the last BIC operation, the result is copied directly
into pc, causing the processor to jump to this address.

The mask of a function is calculated in the same way as explained in Sec-
tion 3.3, with the exception that it is negated at the end of the calculation. This
is necessary because our ARM implementation does not use the AND operator
but the BIC operator.

Alternative function epilogues that do not use the LDM instruction are pro-
tected in a similar way. Masking is always done by performing four BIC instruc-
tions.

4.2 Procedure Linkage Table Entries

As explained in Section 3.5, applications use a structure called the global offset
table in order to enable dynamically loading libraries. However, an application
does not interact directly with the GOT. It interacts with a jump table instead,
called the Procedure Linkage Table (PLT). The PLT consists of PLT entries,
one for each library function that is called in the application. A PLT entry is a
short piece of code that loads the correct address of the library function from
the GOT, and then jumps to it.

Listing 1.5. A PLT entry that does not perform masking.
add ip , pc , #0xNN00000
add ip , ip , #0xNN000
l d r pc , [ ip , #0xNNN ] !

Listing 1.5 shows the standard PLT entry that is used by GCC on the ARM
architecture. The address of the GOT entry that contains the address of the



library function is calculated in the ip register. Then, in the last instruction,
the address of the library function is loaded from the GOT into the pc register,
causing the processor to jump to the function.

CPM protects addresses in the GOT by adding masking instructions to the
PLT entries. Listing 1.6 shows the modified PLT entry.

Listing 1.6. A PLT entry that performs masking.
add ip , pc , #0xNN00000
add ip , ip , #0xNN000
l d r r9 , [ ip , #0xNNN ] !
cmp r9 , #0x10000
or rge r9 , r9 , #0x40000000
b i cge pc , r9 , #0xB0000000
b i c r9 , r9 , #0xNN000000
b i c r9 , r9 , #0xNN0000
b i c r9 , r9 , #0xNN00
b i c pc , r9 , #0xNN

The first three instructions are very similar to the original code, with the
exception that the address stored in the GOT is not loaded into pc but in r9
instead. Then, the value in r9 is compared to the value 0x10000.

If the library has not been loaded yet, the address in the GOT will point to
the helper method that initializes libraries. Since this method is always located
on a memory address below 0x10000, the CMP instruction will modify the status
flags to ‘lower than’. This will force the processor to skip the two following ORRGE
and BICGE instructions, because the suffix ‘GE’ indicates that they should only be
executed if the status flag is ‘greater or equal’. The address in r9 is subsequently
masked by the four BIC instructions, and finally copied into pc.

If the library has been loaded, the address in the GOT will point to a method
loaded in the 0x4NNNNNNN address space. Hence, the CMP instruction will
set the status flag to ‘greater than or equal’, allowing the following ORRGE and
BICGE instructions to execute. These instructions will make sure that the most-
significant four bits of the address are set to 0x4, making sure that the address
will always point to the memory range that is allocated for libraries. The BICGE
instruction copies the result into pc.

4.3 Protecting Other Code Pointers

The protection of function pointers is similar to the protection of the return
address. Before jumping to the address stored in a function pointer, it is first
masked with four BIC operations, to ensure the pointer has not been corrupted.
Register r9 is also used here to do the masking, which guarantees that an attacker
cannot interfere with the masking, or jump over the masking operations.



The long jumps feature of C is implemented on the ARM architecture as an
STM and an LDM instruction. The behavior of the longjmp function is very similar
to the epilogue of a function. It loads the contents of a memory structure into a
number of registers. CPM modifies the implementation of the longjmp function
in a similar way as the function epilogues. The LDM instruction is changed that it
does not load data into the program counter directly, and four BIC instructions
are added to perform the masking and jump to the masked location.

4.4 Limitations of the Prototype

In some cases, the CPM prototype cannot calculate the masks without additional
input. The first case is when a function is allowed to return to library code. This
happens when a library method receives a pointer to an application function as
a parameter, and then calls this function. This function will return back to the
library function that calls it.

The prototype compiler solves this by accepting a list of function names
where the masking should not be done. This list is program-specific and should
be maintained by the developer of the application. In the SPEC benchmark,
only one application has one method where masking should be avoided.

The second scenario is when an application generates code or gets a code
pointer from a library, and then tries to jump to it. CPM will prevent the ap-
plication from jumping to the function pointer, because it is located outside the
acceptable memory regions. A similar solution can be used as described in the
previous paragraph. None of the applications in the SPEC benchmark displayed
this behavior.

5 Evaluation

In this section, we report on the performance of our CPM prototype, and discuss
the security guarantees that CPM provides.

5.1 Compatibility, Performance and Memory Overhead

To test the compatibility of our countermeasure and the performance overhead,
we ran the SPEC benchmark [15] with our countermeasure and without. All tests
were run on a single machine (ARMv7 Processor running at 800MHz, 512Mb
RAM, running Ubuntu Linux with kernel 2.6.28).

All C programs in the SPEC CPU2000 Integer benchmark were used to per-
form these benchmarks. Table 1 contains the runtime in seconds when compiled
with the unmodified GCC on the ARM architecture, the runtime when compiled
with the CPM countermeasure, and the percentage of overhead.

Most applications have a performance hit that is less than a few percent,
supporting our claim that CPM is a highly efficient countermeasure. There are
no results for VORTEX, because it does not work on the ARM architecture.



SPEC CPU2000 Integer benchmarks

Program GCC (s) CPM (s) Overhead Avg. Mask size Jump surface

164.gzip 808 824 +1.98% 10.4 bits 2.02%

175.vpr 2129 2167 +1.78% 12.3 bits 1.98%

176.gcc 561 573 +2.13% 13.8 bits 0.94%

181.mcf 1293 1297 +0.31% 8.3 bits 1.21%

186.crafty 715 731 +2.24% 13.1 bits 3.10%

197.parser 1310 1411 +7.71% 10.7 bits 1.18%

253.perlbmk 809 855 +5.69% 13.2 bits 1.51%

254.gap 626 635 +1.44% 11.5 bits 0.57%

256.bzip2 870 893 +2.64% 10.9 bits 3.37%

300.twolf 2137 2157 +0.94% 12.9 bits 3.17%

Table 1. Benchmark results of the CPM countermeasure on the ARM architecture

Running this application with an unmodified version of GCC results in a memory
corruption (and crash).

The memory overhead of CPM is negligible. CPM increases the size of the
binary image of the application slightly, because it adds a few instructions to
every function in the application. CPM also does not allocate or use memory at
runtime, resulting in a memory overhead of practically 0%.

The SPEC benchmark also shows that CPM is highly compatible with ex-
isting code. The programs in the benchmark add up to a total of more than
500,000 lines of C code. All programs were fully compatible with CPM, with
the exception of only one application where a minor manual intervention was
required (see Section 4.4).

5.2 Security Evaluation

As a first step in the evaluation of CPM, some field tests were performed with
the prototype. Existing applications and libraries that contain vulnerabilities8

were compiled with the new countermeasure. CPM did not only stop the existing
attacks, but it also raised the bar to further exploit these applications. However,
even though this gives an indication of some of the qualities of CPM, it is not a
complete security evaluation.

The security evaluation of CPM is split into two parts. In the first part, CPM
is compared to the widely deployed countermeasures. Common attack scenarios
are discussed, and an explanation is given of how CPM protects the application
in each case. The second part of the security evaluation explains which security
guarantees CPM provides, and makes the case for CPM by using the statistics
we have gathered from the benchmarks.

8 CVE-2006-3459 and CVE-2009-0629



ProPolice ASLR1 NX2 Combination3

Stack-based buffer overflow IL HS, IL RiC IL+RiC

Heap-based buffer overflow N/A HS, IL RiC IL+RiC, HS+RiC

Indirect pointer overwrite N/A HS, IL RiC IL+RiC, HS+RiC

Dangling pointer references N/A HS, IL RiC IL+RiC, HS+RiC

Format string vulnerabilities N/A HS, IL RiC IL+RiC, HS+RiC

1 = This assumes the strongest form of ASLR, where the stack, the heap, and the
libraries are randomized. On Linux, only the stack is randomized.
2 = This assumes that all memory, except code and library memory, is marked as
non-executable. On Linux, this depends from distribution to distribution, and is often
not the case.
3 = This is the combination of the ProPolice, ASLR and No-Execute countermeasures,
as deployed in modern operating systems.
Table 2. An overview of how all the widely deployed countermeasures can be broken
by combining different common attack techniques: Heap spraying (HS), Information
leakage (IL) and Return-into-libc/Return-oriented programming (RiC).

CPM versus Widely Deployed Countermeasures Table 2 shows CPM,
compared in terms of security protection to widely deployed countermeasures
(see Section 2). The rows in the table represent the different vulnerabilities that
allow code injection attacks, and the columns represent the different counter-
measures.

Each cell in the table contains the different (combinations of) attack tech-
niques (see Section 2) that can be used to break the security of the counter-
measure(s). The different techniques that are listed in the table are return-into-
libc/return-oriented programming (RiC), information leakage (IL), and heap
spraying (HS). CPM is the only countermeasure that offers protection against
all different combinations of common attack techniques, albeit not a provably
perfect protection.

Applications that are protected with the three widely deployed countermea-
sures can be successfully attacked by using a combination of two common attack
techniques. If the application leaks sensitive information [3], the attacker can
use this information to break ASLR and ProPolice, and use a Return-into-libc
attack, or the newer but related Return-oriented Programming attacks, to break
No-Execute. If the application does not leak sensitive data, the attacker can use
a variation of a typical heap spraying attack to fill the heap with a fake stack
and then perform a Return-into-libc or Return-oriented Programming attack.

CPM protects against Return-into-libc attacks and Return-oriented Pro-
gramming attacks [9] by limiting the amount of return sites that the attacker
can return to. Both attacks rely on the fact that the attacker can jump to cer-
tain interesting points in memory and abuse existing code (either in library code
memory or application code memory). However, the CPM masks will most likely
not give the attacker the freedom he needs to perform a successful attack. In par-
ticular, CPM will not allow returns to library code, and will only allow returns



to a limited part of the application code. Table 1 shows for each application
the jump surface, which represents the average surface area of the program code
memory that an attacker can jump to with a masked code pointer (without
CPM, these values would all be 100%).

Protection against spraying shellcode on the heap is easy for CPM: the masks
will never allow an attacker to jump to the heap (or any other data structure,
such as the stack), rendering this attack completely useless. An attacker can still
spray a fake stack, but he would then have to perform a successful return-into-
libc or return-oriented programming attack, which is highly unlikely as explained
in the previous paragraph.

CPM can also not be affected by information that an attacker obtained
through memory leaks, because it uses no secret information. The masks that
are calculated by the compiler are not secret. Even if an attacker knows the
values of each individual mask, this will not aid him in circumventing the CPM
masking process. It can give him an idea of which memory locations can still
be returned to, but due to the narrowness of the masks it is unlikely that these
locations will be interesting.

Like many other compiler-based countermeasures, all libraries that an ap-
plication uses must also be compiled with CPM. Otherwise, vulnerabilities in
these libraries may still be exploited. However, CPM is fully compatible with
unprotected libraries, thus providing support for linking with code for which the
source may not be available.

CPM was designed to provide protection against the class of code injection
attacks, but other types of attacks might still be feasible. In particular, data-only
attacks [16], where an attacker overwrites application data and no code pointers,
are not protected against by CPM.

CPM Security Properties The design of CPM depends on three facts that
determine the security of the countermeasure.

CPM masks all code pointers. Code pointers that are not masked are still
potential attack targets. For the ARM prototype, we mask all the different code
pointers that are described in related papers. In addition, we looked at all the
code that GCC uses to emit jumps, and verified whether it should be a target
for CPM masking.

Masking is non-bypassable. All the masking instructions CPM emits are lo-
cated in read-only program code. This guarantees that an attacker can never
modify the instructions themselves. In addition, the attacker will not be able to
skip the masking process. On the ARM architecture, we ensure this by reserving
register r9 and using this register to perform all the masking operations and the
computed jumps.

The masks are narrow. How narrow the masks can be made differs from
application to application and function to function. Functions with few callers
will typically generate more narrow masks than functions with a lot of callers.
The assumption that most functions have only a few callers is supported by the
statistics. In the applications of the SPEC benchmark, 27% of the functions had



just one caller, and 55% of the functions had three callers or less. Around 1.20%
of the functions had 20 or more callers. These functions are typically library func-
tions such as memcpy, strncpy, . . . To improve the masks, the compiler shuffles
functions around and sprinkles a small amount of padding in-between the func-
tions. This is to ensure that return addresses contain as many 0-bits as possible.
With this technique, we can reduce the number of bits that are set to 1 in the
different function-specific masks. Without CPM, an attacker can jump to any
address in memory (232 possibilities on a 32-bit machine). Using the techniques
described here, the average number of bits per mask for the applications in the
SPEC benchmark can be brought down to less than 13 bits. This means that by
using CPM for these applications, the average function is limited to returning
to less than 0.0002% of the entire memory range of an application.

CPM has the same high-level characteristics as the CFI countermeasure,
but it defends against a somewhat stronger attack model. In particular, non-
executable data memory is not required for CPM. If the masks can be made
so precise that they only allow the correct return sites, an application protected
with CPM will never be able to divert from the intended control flow. In this case,
CPM offers the exact same guarantees that CFI offers. However, in practice, the
masks will not be perfect. Hence, CPM can be seen as an efficient approximation
of CFI.

The strength of protection that CPM offers against diversion of control flow
depends on the precision of the masks. An attacker can still jump to any location
allowed by the mask, and for some applications this might still allow interesting
attacks. As such, CPM offers fewer guarantees than CFI. However, given the
fact that the masks are very narrow, it is extremely unlikely that attackers will
be able to exploit the small amount of room they have to maneuver. The SPEC
benchmark also shows that CPM offers a performance that is much better than
CFI9. This can be attributed to the fact that CPM does not access the memory in
the masking operations, whereas CFI has to look up the labels that are stored in
the memory. Finally, CPM offers support for dynamically linked code, a feature
that is also lacking in CFI.

6 Discussion and Ongoing Work

CPM overlaps in part with other countermeasures, but also protects against at-
tacks that are not covered. Vice versa, there are some attacks that might work
on CPM (i.e. attacks that do not involve code injection, such as data-only at-
tacks), which might not work with other countermeasures. Hence, CPM is com-
plementary to existing security measures, and in particular can be combined
with popular countermeasures such as non-executable memory, stack canaries
and ASLR10. Adding CPM to the mix of existing protections significantly raises
9 CFI has an overhead of up to 45%, with an average overhead of 16% on the Intel

x86 architecture. Results for CPM are measured on the ARM architecture.
10 As implemented in current operating systems, where only the stack and the heap

are randomized.



the bar for attackers wishing to perform a code injection attack. One particular
advantage of CPM is that it offers protection against a combination of different
attack techniques, unlike the current combination of widely deployed counter-
measures.

When an attacker overwrites a code pointer somewhere, CPM does not detect
this modification. Instead it will mask the code pointer and jump to the sanitized
address. An attacker can still crash the application by writing rubbish in the
code pointer. The processor would jump to the masked rubbish address, and
will very likely crash at some point. But most importantly, the attacker will not
be able to execute his payload. CPM can be modified to detect any changes
to the code pointer, and abort the application in that case. This functionality
can be implemented in 7 ARM instructions (instead of 4 instructions), but does
temporarily require a second register for the calculations.

The mechanism of CPM can be ported to other architectures. A second
prototype exists for the x86 architecture, but is not reported on in this paper
because of page limit constraints and because it is still incomplete. However,
protection of the largest class of code pointers — the return address — works,
and its performance is comparable to the performance on the ARM architecture.

A promising direction of future work is processor-specific enhancements. In
particular, on the ARM processor, the conditional execution feature may be used
to further narrow down the destination addresses that an attacker can use to
return to. Conditional execution allows almost every instruction to be executed
conditionally, depending on certain status bits. If these status bits are flipped
when a return from a function occurs, and flipped again at the different (known)
return sites in the application, the attacker is forced to jump to one of these
return addresses, or else he will land on an instruction that will not be executed
by the processor.

7 Related work

Many countermeasures have been designed to protect against code injection
attacks. In this section, we briefly highlight the differences between our approach
and other approaches that protect programs against attacks on memory error
vulnerabilities. For a more complete survey of code injection countermeasures,
we refer the reader to [17].

Bounds checkers Bounds checking [18] is a better solution to buffer overflows,
however when implemented for C, it has a severe impact on performance and may
cause existing code to become incompatible with bounds checked code. Recent
bounds checkers [19, 20] have improved performance somewhat, but still do not
protect against dangling pointer vulnerabilities, format string vulnerabilities,
and others.

Probabilistic countermeasures Many countermeasures make use of random-
ness when protecting against attacks. Many different approaches exist when



using randomness for protection. Canary-based countermeasures [13] use a se-
cret random number that is stored before an important memory location: if the
random number has changed after some operations have been performed, then
an attack has been detected. Memory-obfuscation countermeasures [14] encrypt
important memory locations using random numbers. Memory layout random-
izers [21] randomize the layout of memory by loading the stack and heap at
random addresses and by placing random gaps between objects. Instruction set
randomizers [22] encrypt the instructions while in memory and will decrypt them
before execution.

While these approaches are often efficient, they rely on keeping memory
locations secret. Different attacks exist where the attacker is able exploit leaks
to read the memory of the application [3]. Such memory leaking vulnerabilities
can allow attackers to bypass this type of countermeasure.

Separation and replication of information Countermeasures that rely on
separation or replication of information will try to replicate valuable control-
flow information or will separate this information from regular data [23]. These
countermeasures are easily bypassed using indirect pointer overwriting where an
attacker overwrites a different memory location instead of the return address
by using a pointer on the stack. More advanced techniques try to separate all
control-flow data (like return addresses and pointers) from regular data [12],
making it harder for an attacker to use an overflow to overwrite this type of
data.

While these techniques can efficiently protect against buffer overflows that
try to overwrite control-flow information, they do not protect against attacks
where an attacker controls an integer that is used as an offset from a pointer.

Another widely deployed countermeasure distinguishes between memory that
contains code and memory that contains data. Data memory is marked as non-
executable [21]. This simple countermeasure is effective against direct code injec-
tion attacks (i.e. attacks where the attacker injects code as data), but provides no
protection against indirect code injection attacks such as return-to-libc attacks.
CPM can provide protection against both direct and indirect code injection.

Software Fault Isolation Software Fault Isolation (SFI) [24] was not devel-
oped as a countermeasure against code injection attacks in C, but it does have
some similarities with CPM. In SFI, data addresses are masked to ensure that
untrusted code cannot (accidentally) modify parts of memory. CPM on the other
hand masks code addresses to ensure that control flow can not jump to parts of
memory.

Execution monitors Some existing countermeasures monitor the execution of
a program and prevent transferring control-flow which can be unsafe.

Program shepherding [25] is a technique that monitors the execution of a
program and will disallow control-flow transfers that are not considered safe.
Existing implementations have a significant performance impact for some pro-
grams, but acceptable for others.



Control-flow integrity, as discussed in Section 5.2, is also a countermeasure
that is classified as an execution monitor.

8 Conclusion

The statistics and recent high-profile security incidents show that code injection
attacks are still a very important security threat. There are different ways in
which a code injection attack can be performed, but they all share the same
characteristic in that they all overwrite a code pointer at some point.

CPM provides an efficient mechanism to strongly mitigate the risk of code
injection attacks in C programs. By masking code pointers before they are used,
CPM imposes restrictions on these pointers that render them useless to attackers.

CPM offers an excellent performance/security trade-off. It severely limits the
risk of code injection attacks, at only a very small performance cost. It seems to
be well-suited for handheld devices with slow processors and little memory, and
can be combined with other countermeasures in a complementary way.

Acknowledgements This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science Policy, and by the
Research Fund K.U.Leuven.

References

1. National Institute of Standards and Technology, “National vulnerability database
statistics.” http://nvd.nist.gov/statistics.cfm.

2. H. Etoh and K. Yoda, “Protecting from stack-smashing attacks,” tech. rep., IBM
Research Divison, June 2000.

3. R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Wal-
ter, “Breaking the memory secrecy assumption,” in Proceedings of the European
Workshop on System Security (Eurosec), (Nuremberg, Germany), Mar. 2009.

4. K. S. Lhee and S. J. Chapin, “Buffer overflow and format string overflow vulnera-
bilities,” Software: Practice and Experience, vol. 33, pp. 423–460, April 2003.

5. S. Bhatkar, D. C. Duvarney, and R. Sekar, “Address obfuscation: An efficient
approach to combat a broad range of memory error exploits,” in Proceedings of the
12th USENIX Security Symposium, USENIX Association, August 2003.

6. H. Shacham, M. Page, B. Pfaff, E. J. Goh, N. Modadugu, and D. Boneh, “On the
Effectiveness of Address-Space Randomization,” in Proceedings of the 11th ACM
conference on Computer and communications security, October 2004.

7. F. Gadaleta, Y. Younan, and W. Joosen, “Bubble: A javascript engine level coun-
termeasure against heap-spraying attacks,” in Proceedings of the International
Symposium on Engineering Secure Software and Systems (ESSOS), 2010.

8. R. Wojtczuk, “Defeating solar designer non-executable stack patch.” Posted on the
Bugtraq mailinglist, February 1998.

9. H. Shacham, “The geometry of innocent flesh on the bone: Return-into-libc with-
out function calls (on the x86),” in Proceedings of the 14th ACM conference on
Computer and communications security, (Washington, D.C., U.S.A.), pp. 552–561,
ACM, ACM Press, October 2007.



10. skape and Skywing, “Bypassing windows hardware-enforced data execution pre-
vention,” Uninformed, vol. 2, Sept. 2005.

11. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
(Alexandria, Virginia, U.S.A.), pp. 340–353, ACM, November 2005.

12. Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended protection against
stack smashing attacks without performance loss,” in Proceedings of the Twenty-
Second Annual Computer Security Applications Conference (ACSAC ’06), pp. 429–
438, IEEE Press, December 2006.

13. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang, “StackGuard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks,” in Proceedings of the 7th USENIX Security
Symposium, (San Antonio, Texas, U.S.A.), USENIX Association, January 1998.

14. C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuard: protecting pointers
from buffer overflow vulnerabilities,” in Proceedings of the 12th USENIX Security
Symposium, pp. 91–104, USENIX Association, August 2003.

15. J. L. Henning, “Spec cpu2000: Measuring cpu performance in the new millennium,”
Computer, vol. 33, pp. 28–35, July 2000.

16. U. Erlingsson, “Low-level software security: Attacks and defenses,” Tech. Rep.
MSR-TR-2007-153, Microsoft Research, 2007.

17. Y. Younan, W. Joosen, and F. Piessens, “Runtime countermeasures for code in-
jection attacks against c and c++ programs,” ACM Computing Surveys, 2010.

18. Y. Oiwa, T. Sekiguchi, E. Sumii, and A. Yonezawa, “Fail-safe ANSI-C compiler:
An approach to making C programs secure: Progress report,” in Proceedings of
International Symposium on Software Security 2002, November 2002.

19. P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking: An
efficient and backwards-compatible defense against out-of-bounds errors,” in Pro-
ceedings of the 18th USENIX Security Symposium, (Montreal, QC), Aug. 2009.

20. Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W. Joosen,
“Paricheck: An efficient pointer arithmetic checker for c programs,” in Proceedings
of the ACM Symposium on Information, Computer and Communications Security
(ASIACCS), (Bejing, China), ACM, Apr. 2010.

21. The PaX Team, “Documentation for the PaX project.”
22. E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanović, and D. D.

Zovi, “Randomized instruction set emulation to disrupt binary code injection at-
tacks,” in Proceedings of the 10th ACM Conference on Computer and Communi-
cations Security (CCS2003), pp. 281–289, ACM, October 2003.

23. T. Chiueh and F. H. Hsu, “RAD: A compile-time solution to buffer overflow at-
tacks,” in Proceedings of the 21st International Conference on Distributed Com-
puting Systems, (Phoenix, Arizona, USA), pp. 409–420, IEEE Computer Society,
IEEE Press, April 2001.

24. S. Mccamant and G. Morrisett, “Evaluating SFI for a CISC architecture,” in Pro-
ceedings of the 15th USENIX Security Symposium, (Vancouver, British Columbia,
Canada), USENIX Association, August 2006.

25. V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure execution via program
shepherding,” in Proceedings of the 11th USENIX Security Symposium, (San Fran-
cisco, California, U.S.A.), USENIX Association, August 2002.


