
S KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200 A — B-3001 Leuven

Efficient countermeasures for software vulnerabilities

due to memory management errors

Promotoren :

Prof. Dr. ir. W. JOOSEN

Prof. Dr. ir. F. PIESSENS

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Yves YOUNAN

mei 2008

S KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200 A — B-3001 Leuven

Efficient countermeasures for software vulnerabilities

due to memory management errors

Jury :

Prof. Dr. ir. D. Vandermeulen, voorzitter

Prof. Dr. ir. W. Joosen, promotor

Prof. Dr. ir. F. Piessens, promotor

Prof. Dr. ir. P. Verbaeten

Prof. Dr. B. Demoen

Prof. Dr. R. Sekar (Stony Brook University, United States of America)

Prof. Dr. U. Erlingsson (Reykjavik University, Iceland)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Yves YOUNAN

U.D.C. 681.3∗D46

mei 2008

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2008/7515/45
ISBN 978-90-5682-936-0

Abstract

Despite many years of research and large investments by companies, the devel-
opment of secure software is still a significant problem. This is evidenced by the
steady increase in vulnerabilities that are reported year by year. Fast spreading
worms like the Code Red worm, which caused an estimated worldwide economic
loss of $2.62 billion, will often exploit implementation errors in programs to spread
rapidly.

Vulnerabilities that can be exploited by attackers to perform code injection
attacks are an important kind of implementation error. The Code Red worm
exploited a buffer overflow to be able to run arbitrary code on the vulnerable
machine, allowing it to spread by copying itself to the hosts it infected. The
widespread use of C-like languages where such vulnerabilities are an important
issue has exacerbated the problem.

In this dissertation we examine a number of vulnerabilities in C-like languages
that can be exploited by attackers to perform code injection attacks and discuss
countermeasures that provide protection against these kinds of attacks. This dis-
sertation consists of three important parts: it starts off by presenting an extensive
survey of current vulnerabilities and countermeasures, this is followed by a discus-
sion of two novel countermeasures which aim to better protect against attacks on
different vulnerabilities while having only a negligible impact on performance.

The survey provides a comprehensive and structured survey of vulnerabilities
and countermeasures for code injection in C-like languages. Various countermea-
sures make different trade-offs in terms of performance, effectivity, memory cost,
compatibility, etc. This makes it hard to evaluate and compare the adequacy of
proposed countermeasures in a given context. This survey defines a classification
and evaluation framework, on the basis of which advantages and disadvantages
of countermeasures can be assessed. Based on the observations and the conclu-
sions that were drawn from the survey, two countermeasures have been designed,
implemented and evaluated.

The first countermeasure we present is an efficient countermeasure against
stack smashing attacks. Our countermeasure does not rely on secret values (such
as canaries) and protects against attacks that are not addressed by state-of-the-

i

ii

art countermeasures. Our technique splits the standard stack into multiple stacks.
The allocation of data types to one of the stacks is based on the chances that a
specific data element is either a target or source of attacks. We have implemented
our solution in a C-compiler for Linux. The evaluation shows that the overhead
of using our countermeasure is negligible.

The second countermeasure protects against attacks on heap-based buffer over-
flows and dangling pointer references. Overwriting the management information
of the memory allocation library is often a source of attack on these vulnerabilities.
All existing countermeasures with low performance overhead rely on magic values,
canaries or other probabilistic values that must remain secret. In the case of magic
values, a secret value is placed before a crucial memory location and by monitor-
ing whether the value has changed, overruns can be detected. Hence, if attackers
are able to read arbitrary memory locations, they can bypass the countermeasure.
This countermeasure presents an approach that, when applied to a memory al-
locator, will protect against this attack vector without resorting to magic. We
implemented our approach by modifying an existing widely-used memory alloca-
tor. Benchmarks show that this implementation has a negligible, sometimes even
beneficial, impact on performance.

To my mother, Yolande De Moor.

iv

Acknowledgements

This dissertation marks the conclusion of several years of research at the DistriNet
research group of Department of Computer Science of the Katholieke Universiteit
Leuven. I have met many interesting people willing to share their knowledge or
offer help. My gratitude goes out to all of them. First and foremost I would
like to thank my advisors Professor Wouter Joosen and Professor Frank Piessens
for giving me the chance to pursue a PhD. Their valuable insight and advice has
helped improve the quality of the work that you will find in this dissertation. My
thanks also go out to Professor Pierre Verbaeten and Professor Bart Demoen for
serving in my PhD-advisory committee during the last four years. I would also
like to thank Professor R. Sekar and Professor Ùlfar Erlingsson for agreeing to
serve as members of my jury and Professor Dirk Vandermeulen for chairing the
jury. I have met many people at the Department of Computer Science which have
made working there an interesting and fun experience. I’d like to thank everyone
of my current colleagues and former colleagues. At the risk of missing someone, I
will try and list those people who have made a difference: Koen Buyens, Maarten
Bynens, Thomas Delaet, Liesje Demuynck, Kris Demarsin, Dr. Lieven Desmet,
Dr. Bart De Win, Bart Elen, Kristof Geebelen, Tom Goovaerts, Johan Gregoire,
Thomas Heyman, Wouter Horré, Aram Hovsepyan, Dr. Bart Jacobs, Dr. Nico
Janssens, Eryk Kulikowski, Bert Lagaisse, Dr. Tom Mahieu, Dr. Sam Michiels,
Adriaan Moors, Dr. Julien Pauty, Pieter Philippaerts, Davy Preuveneers, Dr.
Peter Rigole, Dr. Riccardo Scandariato, Jan Smans, Tom Stijnen, Dr. Eddy
Truyen, Dr. Yves Vandewoude, Dr. Marko Vandooren, Dries Vanoverberghe, Dr.
Tine Verhanneman, Dr. Kris Verlaenen, Kristof Verslype, Koen Victor, Frédéric
Vogels, Dr. Andrew Wills, Kim Wuyts and Koen Yskout. A special thank you
also goes out to all those of you who participated in the capture flag sessions.

During the course of the work which culminated in this PhD, I ended up
spending 6 months at the Secure Systems Lab at Stony Brook University. I would
like to thank Professor R. Sekar in particular for his advice during my stay. I
would also like to thank the people who made my stay an enjoyable and inter-
esting one: Ezio Bartocci, Dr. Lorenzo Cavallaro, Munyaradzi Chiwara, Agata
Cwalina, Carmelo Fruciano, Cheryl Lassman, Srivanni Narra, Oliviero Riganelli,

v

vi

Indira Rocha, Weiqing Sun, Alok Tongaonkar and Jun (Jamie) Yuan. I have also
had the pleasure of collaborating with Dr. Davide Pozza during his 3 month
research visit in Leuven.

I am also grateful to the people from nologin for their help and for the in-
teresting technical discussions we have had over the years: Martin Zeiser, Craig
Williams, Ilja Van Sprundel, Chad Thurnberg, Stephanie Smith, Shyama Rose,
Orlando Padilla, H D Moore, Matt Miller, Jan Muenther, Richard Johnson, Ken
Johnson, David Hulton, Daniel Hodson, Jordan Hind, Lurene Grenier, Blake
Frantz, Jon Elch, Jerry Connolly, Adam Cecchetti, David (Brian) Cavenah, Chris
Carr, Eric Cabetas and Neil Archibald.

And last but not least, I would like to thank my friends and family for their
support, especially my girlfriend Miet.

Yves Younan
May 2008

Contents

Contents vii

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1
1.1 Scope of the dissertation . 4
1.2 Main contributions . 6

1.2.1 Survey of vulnerabilities and countermeasures for C and C++ 7
1.2.2 A countermeasure against attacks on stack-based buffer

overflows . 7
1.2.3 A countermeasure against attacks on heap-based buffer over-

flows . 8
1.2.4 Other contributions . 8

1.3 Overview of the dissertation . 8

2 Code injection in C and C++ :
a survey of vulnerabilities and countermeasures 11
2.1 Introduction . 13
2.2 Implementation vulnerabilities and exploitation techniques 15

2.2.1 Buffer overflows . 15
2.2.2 Dangling pointer references 23
2.2.3 Format string vulnerabilities 27
2.2.4 Integer errors . 29

2.3 Countermeasure properties . 29
2.3.1 Type . 30
2.3.2 Vulnerabilities . 30
2.3.3 Protection level . 31

vii

viii CONTENTS

2.3.4 Usability . 32
2.3.5 Limitations . 33
2.3.6 Computational and memory cost 34

2.4 Countermeasures . 34
2.4.1 Safe languages . 35
2.4.2 Bounds checkers . 38
2.4.3 Probabilistic countermeasures 40
2.4.4 Separation and replication of information 44
2.4.5 Paging-based countermeasures 44
2.4.6 Execution monitors . 46
2.4.7 Hardened libraries . 49
2.4.8 Runtime taint trackers . 50
2.4.9 Dynamic analysis and Testing 51
2.4.10 Static Analysis . 51

2.5 Related work . 54
2.6 Conclusion . 55

3 Extended protection against stack smashing attacks without per-
formance loss 57
3.1 Introduction . 59
3.2 Stack-based buffer overflows . 60
3.3 The multiple stacks countermeasure to protect against buffer over-

flow vulnerabilities . 63
3.3.1 Approach . 63
3.3.2 Implementation . 68

3.4 Evaluation . 70
3.4.1 Performance . 70
3.4.2 Memory overhead . 72

3.5 Discussion and ongoing work . 73
3.6 Related work . 74

3.6.1 Protection from attacks on stack-based vulnerabilities . . . 74
3.6.2 Alternative approaches . 75

3.7 Conclusion . 77

4 Improving memory management security for C and C++ 79
4.1 Introduction . 81
4.2 Heap-based vulnerabilities for code injection attacks 82

4.2.1 Heap-based buffer overflow 82
4.2.2 Off by one errors . 83
4.2.3 Dangling pointer references 83

4.3 Memory managers . 84
4.3.1 Doug Lea’s memory allocator 84
4.3.2 Boehm garbage collector . 90

CONTENTS ix

4.3.3 Summary . 92
4.4 A more secure memory allocator 92

4.4.1 Countermeasure Design . 93
4.4.2 Prototype Implementation 96
4.4.3 Managing chunk information 98

4.5 Evaluation . 98
4.5.1 Performance . 100
4.5.2 Memory overhead . 102
4.5.3 Security evaluation . 104

4.6 Related work . 105
4.6.1 Protection from attacks on heap-based vulnerabilities . . . 105
4.6.2 Alternative approaches . 108

4.7 Conclusion . 110

5 Conclusion 111
5.1 Contributions . 111
5.2 Future work . 113

5.2.1 A bounds checker for pointer arithmetic 113
5.2.2 A countermeasure for dangling pointer references 113

5.3 Future research opportunities and application domains 114
5.3.1 Embedded systems and mobile devices 114
5.3.2 Virtual machine monitors 115

Bibliography 116

List of Publications 137

Biography 139

Dutch Summary 141

x CONTENTS

List of Figures

1.1 Top 20 Threats and Vulnerabilities, January through October 2007
(source: [85], c©Cisco Systems Inc.) 3

1.2 Shifts in Threats and Vulnerabilities Reported (source: [85], c©Cisco
Systems Inc.) . 4

1.3 Countermeasure triangle . 5

2.1 Stack-layout on the IA32-architecture 17
2.2 Normal stack-based buffer overflow 18
2.3 Stack-based buffer overflow overwriting frame pointer 18
2.4 Stack-based buffer overflow using indirect pointer overwriting . . . 19
2.5 Heap containing used and free chunks 21
2.6 Heap-based buffer overflow . 22
2.7 List of free chunks . 24
2.8 Chunk4 added to the list of free chunks (chunk3 not shown) . . . 25
2.9 List of free chunks with chunk2 freed twice 26
2.10 Chunk2 reallocated as used chunk 26
2.11 Overwriting the return address using a double free 27
2.12 Overwriting a value 1 byte at a time using %n specifiers 28

3.1 Indirect pointer overwriting attack 62
3.2 Stack layout for 5 stacks . 68
3.3 Gaps on the different stacks . 69

4.1 Heap containing used and free chunks 85
4.2 Heap-based buffer overflow in dlmalloc 86
4.3 Off by one error in dlmalloc . 88
4.4 List of free chunks in dlmalloc: full lines show a normal list of

chunks, dotted lines show the changes after a double free has occurred. 88
4.5 Linked list of free chunks in Boehm’s garbage collector 92
4.6 Double free of chunk2 in Boehm’s garbage collector 92
4.7 Original (left) and modified (right) process memory layout 94

xi

xii LIST OF FIGURES

4.8 Lookup table and chunkinfo layout 97

List of Tables

2.1 Countermeasure type . 30
2.2 Vulnerability addressed by a countermeasure 31
2.3 Protection level of a countermeasure 31
2.4 Stage of the software engineering process that a countermeasure is

applied at . 32
2.5 Effort required to apply a countermeasure 33
2.6 Limitations of a countermeasure 34
2.7 Computational and memory cost of a countermeasure 35
2.8 Safe languages . 37
2.9 Bounds Checkers . 40
2.10 Probabilistic countermeasures . 44
2.11 Separation Countermeasures . 45
2.12 Paging-based countermeasures . 47
2.13 Execution monitors . 49
2.14 Hardened Libraries . 50
2.15 Runtime taint trackers . 50
2.16 Dynamic Analysis and Testing . 52
2.17 Static Analyzers . 53

3.1 Attack source versus attack target categories 64
3.2 Benchmark results of the multistack approach 71
3.3 Local variables stored on each stack 71

4.1 Programs used in the evaluations of dnmalloc 99
4.2 Average macrobenchmark runtime results for dlmalloc and dnmalloc 100
4.3 Average microbenchmark runtime results for dlmalloc and dnmalloc 101
4.4 Average memory usage for dlmalloc and dnmalloc 103
4.5 Results of exploits against vulnerable programs protected with dn-

malloc . 104

xiii

xiv LIST OF TABLES

List of Listings

2.1 Unlink macro . 23
2.2 Unlink macro expanded . 23
2.3 Adding a chunk to the list of free chunks 24
2.4 Freeing chunk2 twice . 25
2.5 Unlinking chunk2 . 26
4.1 Unlink macro . 86
4.2 Unlink macro expanded . 87
4.3 Adding a chunk to the list of free chunks 89
4.4 Freeing chunk2 twice . 89
4.5 Unlinking chunk2 . 89
4.6 Example microbenchmark (no memset) 101

xv

xvi LIST OF LISTINGS

Chapter 1

Introduction

Since the advent of multi-user computing, security has been an important con-
cern. In the early days of multi-user computing, users would attempt to get extra
time on, or access to, shared resources. This spawned a whole domain of research
into computer security that has become an integral part of the computer science
research field. The advent of massively networked systems like the Internet gave
the need for security a renewed urgency. Researchers have been quite successful in
designing security mechanisms that will provide essential protection to computer
systems. The domain of access control, for example, has built extensive models
for providing access control depending on the specific access control needs of an
entity. Research into cryptography has also produced extensive and provably se-
cure cryptographic algorithms that will keep important data unreadable as long
as the key is kept safe.

While such important security problems have been addressed and are still being
improved upon, a very important problem remains with the implementation of
programs. Often implementation errors will undo the security provided by access
control and cryptographic protocols. In many cases, errors in implementing a
cryptographic protocol will significantly weaken the algorithm or errors in the
implementation of access control mechanisms could allow users to elevate their
privileges.

An important form of implementation errors that leads to security problems
also results from a lack of input checking. This lack of input checking can result
in data being interpreted as computer code. This can occur both for interpreted
languages as for compiled languages. However, such vulnerabilities have been
particularly severe for programs that were written in C-like languages, because
these programs are often used for network daemons, operating systems and device
drivers. In C-like languages, insufficient input checking could lead to a buffer over-
flow, where a vulnerable program will write past the end of an object, overwriting
adjacent objects.

1

2 Introduction

This situation has improved with the advent of safe languages, such as Java
and C#, which give programmers less direct access to memory and can thus pre-
vent specific bugs from occurring. Garbage collecting languages, do not allow
programmers to manually free memory, removing the problem of dangling pointer
references. Safe languages will usually not allow the programmer to directly ma-
nipulate pointers or perform pointer arithmetic, preventing an important cause of
buffer overflows. Array accesses via indexes are often checked at runtime by stor-
ing the size of the array and ensuring that the index access is within the bounds
of the array.

However, it is not always possible to use such safe languages. There is a sig-
nificant amount of legacy code that has been written in C-like languages that is
still in use today. Moreover, many programmers have expertise in these languages
and continue to use them to develop new products in these languages. In some
cases, the use of a C-like language is a necessity: for specific system software, pro-
grammers need direct access to memory, which would be denied by safe languages.
Some devices also have very specific constraints with respect to memory usage and
performance, again making a C-like language an attractive choice.

Vulnerabilities that are the result of memory management errors in C-like
languages, are a significant threat to the security of present day computer systems.
Most of these vulnerabilities result from mishandling of arrays, resulting in buffer
overflow vulnerabilities. Using such a vulnerability, an attacker can overwrite
memory locations that the execution environment relies on to correctly execute
programs.

This problem occurs because abstractions that exist in a higher-level language
do not exist in a lower-level representation of that program [60]. When a C pro-
gram is compiled, the compiler will introduce a number of mechanisms that allow it
to more easily facilitate program execution and implement these high level abstrac-
tions. These mechanisms are not present in the C language and the programmer
should not directly access them. However, because C is an unsafe language, it
is possible for a program to access these mechanisms, either directly by pointer
manipulation or accidentally by a vulnerability. When such a vulnerability oc-
curs, an attacker may be able to use it to gain control of the program’s execution
flow. An example of such a mechanism is the return address: this address is
used to be able to execute functions. When a function is called, the address of
the next instruction after the function call is placed onto the stack. Once the
function has finished executing, execution of the main program will resume at the
return address. This mechanism allows the program to execute nested and recur-
sive function calls. An attacker can abuse this mechanism using a vulnerability
to modify the return address to point to a different location. When the function
terminates, it will transfer control to this new location and any data stored there
will be interpreted as machine code and executed. As such, if attackers are able
to provide input to the program that will be stored in the program’s memory and

3

Cumulative Annual Alert Totals

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12

A
le
rt
s 2007

2006
2005

Month

Vulnerability and Threat Categories
JAN-OCT 2007

0 100 200 300 400

Symbolic Link
Exploit System Trust
Virus
Misconfiguration
Trojan Horse
Spoofing
Backdoor Trojan
Directory Traversal
Multiple Vulnerabilities
Format String
Worm
Unauthorized Access
Security Solution Weakness
Software Fault (Vul)
Cross-Site Scripting
Information Disclosure
Privilege Escalation
Arbitrary Code Execution
Denial of Service
Buffer Overflow

Figure 1.1: Top 20 Threats and Vulnerabilities, January through October 2007
(source: [85], c©Cisco Systems Inc.)

are then able to use a vulnerability to modify the return address, they will be able
to execute arbitrary code with the privilege level of the process.

This type of vulnerability was exploited in many of the most devastating worms
in recent memory: the Code Red worm, which caused a world wide economic loss
estimated at $ 2.62 billion [58]; the Sasser worm, which caused Delta Airlines to
cancel several transatlantic flights and shut down X-ray machines at a Swedish
hospital [185]; and the Zotob worm, which most likely caused a nationwide break-
down of the computers handling the DHS’s US-VISIT program on August, 18th
2005, leading to long lines of travelers at several major airports [176].

According to the NIST’s National Vulnerability Database [120], 584 buffer
overflow vulnerabilities were reported in 2005, making up 12% of the 4852 vul-
nerabilities reported that year. In 2004 the amount of reported buffer overflow
vulnerabilities was 341 (14% of 2352). This means that, while the amount of
reported vulnerabilities almost doubled in 2005, buffer overflows still remain an
important source of attack. 418 of the 584 buffer overflows reported in 2005 had
a high severity rating, this makes up 21% of the 1923 vulnerabilities rated with
a high severity level. They also make up 42% of the vulnerabilities that allow an
attacker to gain administrator access to a system.

In Cisco’s annual report for 2007 [85], statistics about vulnerabilities and their

4 Introduction

Threat Category Alert Count % Change from 2006

Arbitrary Code Execution 232 –24%

Backdoor Trojan 15 –72%

Buffer Overflow 395 23%

Directory Traversal 17 –52%

Misconfiguration 8 –57%

Software Fault (Vul) 98 53%

Symbolic Link 5 –64%

Worm 37 –28%

Annual Urgency Scores

0

10

20

30

40

50

60

Urgency ≥3 Urgency ≥4 Urgency ≥5

2005
2006
2007

Figure 1.2: Shifts in Threats and Vulnerabilities Reported (source: [85], c©Cisco
Systems Inc.)

causes are presented based on the alerts issued by the Cisco Security IntelliShield
Alert Manager Service1. In the graph in Figure 1.1 the vulnerabilities and their
effects are mixed together, making it harder to gather useful data. However, it
shows clearly that vulnerabilities that could allow arbitrary code execution when
exploited make up the second largest group of vulnerabilities reported by the
IntelliShield Alert Service in 2007. It also gives a clear indication that buffer
overflow vulnerabilities are still a very important vulnerability, making up the
largest group of vulnerabilities reported by the IntelliShield Alert Service.

In the report, a comparison is also made to the trends with vulnerabilities in
2006 (see Figure 1.2). While less vulnerabilities were reported that resulted in code
execution, more vulnerabilities were reported that are buffer overflows. This could
mean that more countermeasures are being applied, which turn buffer overflows
into denial of service attacks, rather than into code injection attacks. While this
is a positive trend demonstrating the positive results of the research in this area,
it is also worrying that the relative amount of buffer overflows has increased and
makes up such a large share of the reported vulnerabilities.

1.1 Scope of the dissertation

In this dissertation we focus on some important vulnerabilities that can be used
by an attacker to gain code execution in programs written in C-like languages:

Buffer overflows can occur when a program does not ensure that a write op-

1This is a service that will gather information on current vulnerabilities and distribute it to
customers who subscribe to the service.

1.1 Scope of the dissertation 5

Efficient Automatic

Complete

Figure 1.3: Countermeasure triangle

eration will not write past end of the memory that was allocated for an
object

Dangling pointer references can occur when pointers exist to memory that
has been released back to the system.

Format string vulnerabilities can occur when an attacker has control over a
format string that is later passed to a format function.

Integer errors can occur when integers overflow or a signed integer is interpreted
as an unsigned integer.

We will often refer to the exploitation of these vulnerabilities as code injection
attacks. This is the term we chose to describe these kinds of attacks at the start of
the research. It has since been redefined by the security community as pertaining
mostly to web application vulnerabilities where interpreted code is injected into a
web application [184], while the vulnerabilities described in this dissertation are
now often referred to as memory corruption vulnerabilities. In this dissertation,
the term code injection attack refers to the exploitation of the aforementioned
vulnerabilities.

Many countermeasures have been designed to address these vulnerabilities.
These countermeasures are usually evaluated using three important criteria: com-
pleteness, efficiency and the level of automation. In analogy with the project
triangle in design engineering “Good, Cheap, Reliable: Pick any two” [183], most
countermeasures will only satisfy two of the criteria.

Completeness defines how complete the protection is against the vulnerability
that the countermeasure is addressing. For example, bounds checkers will

6 Introduction

generally be complete with respect to buffer overflows, because they will
prevent access to memory out of the bounds of the object that is being
addressed.

Efficiency determines the countermeasure’s impact on both performance and
memory usage.

Automatic covers multiple facets of countermeasures that could require human
intervention. The less manual intervention is required, the more automatic
the countermeasure will be. If a countermeasure is not compatible with
existing C code, it will require manual intervention. Countermeasures that
require interpretation and processing of the results (like static and dynamic
analyzers), also require some intervention. If a program must be annotated
for the countermeasure to work, it will also need manual intervention.

Each countermeasure is a compromise between efficiency, completeness and au-
tomatization. Often two of these properties can be satisfied well, but compromises
have to be made in the other field:

• A countermeasure that is efficient and complete will require manual inter-
vention to be applied to a program.

• A countermeasure that is complete and can be applied automatically, will
be inefficient.

• A countermeasure that is efficient and can be applied automatically, will be
incomplete.

However, this is the ideal situation when discussing countermeasures: some-
times it is possible to provide some improvement for countermeasures in one area
while only minimal or no loss is made in the others. The countermeasures pre-
sented in this dissertation are of that nature: they will provide significant improve-
ments to the completeness of a countermeasure while only slightly (or not at all)
decreasing efficiency.

1.2 Main contributions

The focus for this dissertation is on designing countermeasures that improve com-
pleteness of countermeasures that are very efficient and completely automatic. The
research for this dissertation started by performing an extensive survey of vulner-
abilities and countermeasures for C and C++, where we defined a classification
and evaluation framework for countermeasures. Based on this survey, two counter-
measures were designed, one that protects against attacks on stack-based buffer
overflows and one that protects against attacks on heap-based buffer overflows.

1.2 Main contributions 7

Both countermeasures are based on a similar premise: separation of control-flow
data from regular data. Both countermeasures offer better protection than coun-
termeasures with comparable efficiency and that don’t require manual intervention.
The focus for this thesis is on countermeasures for buffer overflows, although the
heap-based buffer overflow countermeasure also protects against exploitation of
some dangling pointer references. The main reason for focusing on buffer over-
flows is because these remain the most important of the four vulnerabilities that
this dissertation addresses [85]. Format string vulnerabilities were an important
vulnerability when attackers first discovered how these could be exploited, however
the fixes for these kind of vulnerabilities are relatively easy to implement, which is
also evidenced by the sharp reduction in reported vulnerabilities after the initial
discovery. Integer errors are not exploitable errors by themselves but can lead to
buffer overflows when such an integer is used as an offset to a pointer or array.

1.2.1 Survey of vulnerabilities and countermeasures for C
and C++

A comprehensive and structured survey of vulnerabilities and countermeasures for
code injection in C and C++ was performed. Various countermeasures make differ-
ent trade-offs in terms of performance, effectiveness, memory cost, compatibility,
etc. This makes it hard to evaluate and compare the adequacy of proposed coun-
termeasures in a given context. This survey defines a classification and evaluation
framework, on the basis of which advantages and disadvantages of countermeasures
can be assessed.

1.2.2 A countermeasure against attacks on stack-based
buffer overflows

An important contribution is a countermeasure for stack-based buffer overflows.
In this countermeasure, control-flow data (data that is used to regulate the control
flow of the program, like a return address) is separated from regular data on the
stack. This separation is achieved by assigning two values to each type of data:
target value (how valuable is this type of data to an attacker when trying to
perform a code injection attack) and source value (how likely is an attacker to
use this type of data to perform an attack). For example, the return address (and
other saved registers) has a high target value, since an attacker who controls it can
use it to perform code injection. The return address also has a low source value;
attackers will never have direct control over it, an attack is needed to modify it.
An array of characters has a low target value since attackers can generally not
achieve code injection when overwriting such an array. It does, however, have a
high source value: these types of arrays are generally the ones vulnerable to buffer
overflows. Depending on these types of data the stack can be divided into multiple

8 Introduction

stacks that are separated from one another. As a result, buffer overflows in an
array of characters can only overwrite other arrays of characters, but not return
addresses. This countermeasure is very efficient, automatic and more complete
than countermeasures that focus on these first two properties.

1.2.3 A countermeasure against attacks on heap-based
buffer overflows

Another important countermeasure that has been designed and implemented
makes it harder for an attacker to execute a code injection attack if a heap-based
buffer overflow exists. When a heap-based buffer overflow is exploited, an attacker
will often modify the memory management information to reliably achieve code
injection. The countermeasure prevents this type of attack by separating the mem-
ory management information from the rest of the dynamically allocated memory.
The countermeasure is also very efficient, automatic and more complete than other
countermeasures that focus on these first two properties.

1.2.4 Other contributions

A number of other contributions have also been made during the research per-
formed that resulted in this dissertation:

• A more structured approach to designing countermeasures for code injection
attacks is presented in [199].

• A countermeasure for data- and bss overflows is discussed in [202]. This
countermeasure has not been implemented in a prototype because the tech-
nique that could be applied here is similar to the techniques used for our
stack-based countermeasure.

• A discussion of how an attacker could exploit a number of different memory
allocators is presented in [203].

1.3 Overview of the dissertation

This dissertation is a combination of a number of papers that were published
during the last 4 years.

• Chapter 2 contains a survey of the domain of vulnerabilities that can result
in code execution and countermeasures that try to prevent, detect or miti-
gate attacks on these vulnerabilities. It was submitted to ACM Computing
Surveys for review and currently remains as such.

1.3 Overview of the dissertation 9

• Chapter 3 presents a countermeasure for stack-based buffer overflows that
was published in the proceedings of the Twenty-Second Annual Computer
Security Applications Conference.

• Chapter 4 presents a countermeasure that was designed and implemented
during the research that led to this dissertation. It discusses a technique that
can be applied to memory allocators to prevent heap-based buffer overflows.
The paper presented in this chapter is a revised version of a paper that
was published in the proceedings of the Eighth International Conference on
Information and Communication Security. This revised version is currently
under submission to the Journal of Computer Security.

• Chapter 5 summarizes the main contributions of the dissertation. It also
discusses possible avenues for future work and examines future research di-
rections.

10 Introduction

Chapter 2

Code injection in C and
C++ :
a survey of vulnerabilities
and countermeasures

In this chapter, we present a survey of vulnerabilities and countermea-
sures for C and C++. Such vulnerabilities are often used to inject
code into a vulnerable program, allowing attackers to execute arbitrary
code with the vulnerable program’s privileges. The survey extensively
discusses how attackers exploit these vulnerabilities and examines the
current state of the art in the field of countermeasures for these vul-
nerabilities. It defines a number of criteria that can be used to classify
and evaluate countermeasures for code injection attacks. A significant
number of countermeasures were studied to present this survey, the au-
thors aimed to achieve an as complete view as possible of the domain
of vulnerabilities that could lead to code injection and their counter-
measures.

The survey grew out of a study of the related work performed by the
author when commencing the research for this dissertation. Based on
this survey, a methodology was envisioned that could be used to more
effectively design countermeasures, which was published in [199]. This
methodology, together with the survey, also gave rise to the idea of sep-
arating control data from regular data, which was then used as the basis
for designing the two countermeasures that are discussed in chapters 3
and 4.

11

12
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

This paper was written together with Wouter Joosen and Frank
Piessens. A preliminary version of this paper was published as Tech-
nical report CW386 of the Department of Computer Science of the
Katholieke Universiteit Leuven in July 2004 [198]. A revised version
was submitted to ACM Computing Surveys for review in January 2005.
It was conditionally accepted provided minor revisions were performed
in March 2007. The revised paper was submitted in May 2007. It cur-
rently remains under review. During this revision the countermeasures
that are described in this dissertation where also discussed in the sur-
vey: both fall into the same category of separation countermeasures but
address different types of vulnerabilities.

2.1 Introduction 13

Abstract

The lack of memory-safety in C or C++ often leads to security vulnerabilities.
Often, such vulnerabilities are exploited to gain control over the execution-flow
of applications via code injection attacks. This paper provides a comprehensive
and structured survey of vulnerabilities and countermeasures for code injection
in these languages. Various countermeasures make different trade-offs in terms
of performance, effectivity, memory cost, compatibility, etc. This makes it hard
to evaluate and compare the adequacy of proposed countermeasures in a given
context. This paper defines a classification and evaluation framework, on the
basis of which advantages and disadvantages of countermeasures can be assessed.

2.1 Introduction

Software vulnerabilities are currently, and have been since the advent of multiuser
and networked computing, a major cause of computer security incidents [117,
164, 206]. Most of these software vulnerabilities can be traced back to a few
mistakes that programmers make over and over again [131]. Even though many
documents and books [83, 175, 182] exist that attempt to teach programmers how
to program more securely, the problem persists and will most likely continue to be a
major problem in the foreseeable future [160]. This document focuses on a specific
subclass of software vulnerabilities: implementation errors in C [95] and C++
[59, 167] as well as the countermeasures that have been proposed and developed
to deal with these vulnerabilities. More specifically, implementation errors that
allow an attacker to break memory safety and execute foreign code are addressed
in this report.

Several preventive and defensive countermeasures have been proposed to com-
bat exploitation of common implementation errors and this document examines
many of these. Our main goal has been to provide a complete survey of all exist-
ing countermeasures. However, since this is an active field of research, our survey
is only a snapshot of what has been released up to now. We also describe sev-
eral ways in which some of the proposed countermeasures can be circumvented.
Although some countermeasures examined here protect against the more general
case of buffer overflows, this document focuses on examining protection against
attacks where an attacker specifically attempts to execute code that an application
would not execute in normal circumstances (e.g., injecting code, calling a library
function with specific arguments).

Given the large number of countermeasures that have been proposed to deal
with code injection attacks, and given the wide variety in techniques used in the
design of these countermeasures, it is hard for an outsider of the research field
itself to get a good understanding of existing solutions. This paper aims to pro-
vide such an understanding to software engineers and computer scientists without

14
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

specific security expertise, by providing a structured classification and evaluation
framework. At the top level, we classify existing countermeasures based on the
main technique they use to address the problem. There is some overlap in these
sections however and sometimes it may be possible to classify a countermeasure
in one category or another.

Safe languages are languages in which most of the discussed implementation vul-
nerabilities have been made hard or impossible. These languages generally
require a programmer to specifically implement a program in this language
or to port an existing program to this language. We will focus on languages
that are similar to C i.e., languages that stay as close to C and C++ as
possible: these are mostly referred to as safe dialects of C. Programs written
in these dialects generally have some restrictions in terms of memory man-
agement: the programmer no longer has explicit control over the dynamic
memory allocator.

Bounds checkers perform bounds checks on array and pointer operations and
detect when the program tries to perform an out of bounds operation and
take action accordingly.

Probabilistic countermeasures make use of randomness to make exploitation
of vulnerabilities harder.

Separation and replication of information countermeasures replicate valu-
able control-flow information or separate control-flow data from regular data.
The replicated information can later be used to verify that the original value
is unchanged. Separation can prevent regular data from overwriting control-
flow data, since these types o‘f data will no longer be adjacent.

Runtime monitors monitor specific security relevant events (like system calls)
and perform specific actions based on what is monitored. Some monitors will
try to limit the damage a successful attack on a vulnerability could do to the
underlying system by limiting the actions a program can perform. Others
will detect if a program is exhibiting unexpected behavior and will provide
alerts if this occurs. The first type of runtime monitor is called a sandbox,
while the second type of monitoring is called anomaly detection.

Hardened libraries replace library functions with versions that perform extra
checks to ensure that the values are correct.

Runtime taint trackers will instrument the program to mark input as tainted.
If such tainted data is later used in the program where untainted data is ex-
pected or is used to modify a trusted memory location (like a return address),
then a fault is generated.

2.2 Implementation vulnerabilities and exploitation techniques 15

Dynamic analysis and testing tools instrument the program to generate spe-
cific events when a possible error is encountered or will try and cause errors
in the program by giving the program various ranges of input.

Static source code analyzers attempt to find implementation vulnerabilities
by analyzing the source code of an application. This could be as simple as
looking for library functions known to be vulnerable to an implementation
error or as complicated as making a full model of the program and then
deciding what constructs might cause a specific vulnerability.

This document is structured as follows: Section 2.2 contains an overview of the
implementation errors that the countermeasures in Section 2.4 attempt to defend
against. It also describes typical ways in which these implementation errors can be
abused. Section 2.3 contains a description of the properties that we will assign to
the various countermeasures that are examined in Section 2.4. Section 2.4 contains
our survey of the countermeasures for the vulnerabilities in Section 2.2 and in some
cases, ways in which they can be circumvented Section 2.5 examines related work
in the field of vulnerability and countermeasure surveys. Section 2.6 presents our
conclusion.

2.2 Implementation vulnerabilities and exploita-
tion techniques

This section contains a short summary of the implementation errors for which we
shall examine countermeasures, it is structured as follows: for every vulnerability
we first describe why a particular implementation error is a vulnerability. We
then describe the basic technique an attacker would use to exploit this vulner-
ability and then discuss more advanced techniques if appropriate. We mention
the more advanced techniques because some of these can be used to circumvent
some countermeasures. A more thorough technical examination of the vulnera-
bilities and exploitation techniques (as well as a technical examination of some
countermeasures) can be found in [195].

When we describe the exploitation techniques in this section we focus mostly
on the IA32-architecture [86]. While the details for exploiting a specific vulnera-
bilities are architecture dependent, the main techniques presented here should be
applicable to other architectures as well.

2.2.1 Buffer overflows

When an array is declared in C or C++, space is reserved for it and the array is
manipulated by means of a pointer to the first byte. At run-time no information
about the array size is available and most C-compilers will generate code that

16
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

allows a program to copy data beyond the end of an array, overwriting adjacent
memory space. If interesting information is stored somewhere in such adjacent
memory space, it could be possible for an attacker to overwrite it.

We have divided this section into two specific types of overflows depending on
where in memory they occur. While they are variants of the same vulnerability,
we have divided them into two subgroups because they way in which they are
exploited and the way in which some countermeasures offer protection against
these exploits, can be very different.

Stack-based buffer overflows

Vulnerability On the IA32-architecture the stack grows down in memory
(meaning newer stackframes and variables are at lower addresses than older ones).
The stack is divided into stackframes. Each stackframe contains information about
the current function: arguments to a function that was called, registers whose val-
ues must be stored across function calls, local variables, the saved frame pointer1

and the return address. An array allocated on the stack will usually be contained
in the section of local variables of a stackframe. If a program copies past the end
of this array it will be able to overwrite anything stored before it and it will be
able to overwrite the function’s management information, like the return address.

Figure 2.1 shows an example of a program’s stack when executing the function
f1. This function was called by the function f0 that has placed the arguments
for f1 after its local variables and then executed a call instruction. The call has
saved the return address (a pointer to the next instruction after the call to f1)
on the stack. The function prologue (a piece of code that is executed before a
function is executed) then saved the old frame pointer on the stack. The value
of the stack pointer at that moment has been saved in the frame pointer register.
Finally, space for two local variables has been allocated: a pointer pointing to data
and an array of characters (a buffer). The function would then execute as normal.
The colored part of Figure 2.1 indicates what could be written to by the function
if the buffer is used correctly.

In Windows, the default exception handler is also stored at the end of the
stack. This exception handler contains function pointers to functions that must
be executed when a specific exception occurs. An attacker could also overwrite
the exception handler by overflowing past the end of an array. Attackers can use
this to create a more stable exploit, if the return address is wrong, an exception

1As variables get pushed and popped from the stack, the stack pointer keeps changing. If the
compiler wants to access a local variable (as an offset from the stack pointer), it must keep track
of the current value of stack pointer to be able to access the variable and calculate the offset
accordingly. To prevent this calculation the frame pointer is used. When a new stack frame is
created, that location is stored in a register. When the compiler tries to access a local variable,
it can now use a fixed offset from the frame pointer.

2.2 Implementation vulnerabilities and exploitation techniques 17

Variables
f1

Local Stackframe f1

Stackframe f0

Stack

Code

Higher Addresses
Return address f0

Saved Frame Pointer f0f0:
CodeCode

Data

Value1

Value2

Local variables f0

Arguments f1

 ...
 call f1
 ...

Lower addresses

Return address f1
Saved Frame Pointer f1

Pointer to data

Buffer

Figure 2.1: Stack-layout on the IA32-architecture

will be generated which could give attackers a second chance.

Exploitation

Basic exploitation Figure 2.2 shows what could happen if attackers are able
to make the program copy data beyond the end of an array (the colored part is
under the attackers’ control). Besides the contents of the buffer, the attackers
have overwritten the pointer, the saved frame pointer (these last two have been
left unchanged in this case) and the return address of the function. They could
continue to write into the older stackframe if so desired, but in most cases over-
writing the return address is an attacker’s main objective as it is the easiest way
to gain control over the program’s execution-flow. The attackers have changed the
return address to point to code that they copied into the buffer, probably using
the same copying operation that they used to copy past the end of the buffer.
When the function returns, the return address would, in normal cases, be used to
resume execution after the function has ended. But since the return address of
the function has been overwritten with a pointer to the attacker’s injected code,
execution-flow will be transfered there [3, 157].

Frame pointer overwriting In some cases it might not be possible for attackers
to overwrite the return address. This could be because they can only overwrite a
few bytes and cannot reach the return address or because the return address has
been protected by some countermeasure. Figure 2.3 shows how an attacker could

18
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Injected Code
Buffer

Variables
f1

Local Stackframe f1

Stackframe f0

Return address f0
Stack

Code

Higher Addresses

Saved Frame Pointer f0f0:
CodeCode

Data

Value1

Value2

Local variables f0

Arguments f1

 ...
 call f1
 ...

Lower addresses

Return address f1
Saved Frame Pointer f1

Pointer to data

Figure 2.2: Normal stack-based buffer overflow

Buffer
Variables
f1

Local Stackframe f1

Stackframe f0

Stack

Code

Higher Addresses

f0:
CodeCode

Data

Value1

Value2

Local variables f0

Arguments f1

 ...
 call f1
 ...

Lower addresses

Return address f1
Saved Frame Pointer f1

Return address f0
Saved Frame Pointer f0

Return address f0
Saved Frame Pointer f0

Injected Code

Pointer to data

Figure 2.3: Stack-based buffer overflow overwriting frame pointer

2.2 Implementation vulnerabilities and exploitation techniques 19

Buffer
Injected Code

Variables
f1

Local Stackframe f1

Stackframe f0

Stack

Code

Higher Addresses
Return address f0

Saved Frame Pointer f0f0:
CodeCode

Data

Value1

Value2

Local variables f0

Arguments f1

 ...
 call f1
 ...

Lower addresses

Return address f1
Saved Frame Pointer f1

Pointer to data

Figure 2.4: Stack-based buffer overflow using indirect pointer overwriting

manipulate the frame pointer to still be able to gain control over the execution-
flow of the program: the saved frame pointer would be set to point to a different
location instead of to the saved frame pointer of the previous stackframe [97].
When the function ends, the frame pointer register will be moved to the stack
pointer register, effectively freeing the stack of local variables. Subsequently the
old frame pointer register of f0 will be restored into the frame pointer register
by popping the saved frame pointer off the stack. Finally the function will return
by popping the return address in the instruction pointer register. In our example
attackers have changed the saved frame pointer to point to a value they control
instead of the frame pointer for stackframe f0. When the function f1 returns,
the new saved frame pointer for f0 will be stored into the register which points to
attacker-controlled memory. When the frame pointer register is used to ‘free’ the
stack during f0’s function epilogue, the program will read the attacker-specified
saved frame pointer and will transfer control to the attacker’s return address when
returning.

Indirect pointer overwriting If attackers, for some reason, cannot overwrite
the return address or frame pointer directly (some countermeasures prevent this),
they can use a different technique, illustrated in Figure 2.4, called indirect pointer
overwriting [34], which might still allow them to gain control over the execution-
flow.

The overflow is used to overwrite the local variable of f1 holding the pointer to
value1. The pointer is changed to point to the return address instead of pointing
to value1. If the pointer is then dereferenced and the value it points to is changed

20
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

at some point in the function f1 to an attacker-specified value, then they can use
it to change the return address to a value of their choosing.

Although in our example we illustrate this technique by overwriting the return
address, indirect pointer overwriting can be used to overwrite arbitrary memory
locations: any pointer to code that will executed later could be interesting for an
attacker to overwrite.

Heap-based buffer overflows

Vulnerability Heap memory is dynamically allocated at run-time by the appli-
cation. As is the case with stack-based arrays, arrays on the heap can, in most
implementations, be overflowed too. The technique for overflowing is the same ex-
cept that the heap grows upwards in memory instead of downwards. However no
return addresses are stored on the heap, so an attacker must use other techniques
to gain control of the execution-flow.

Exploitation

Basic exploitation One way of exploiting a buffer overflow located on the heap
is by overwriting heap-stored function pointers that are located after the buffer
that is being overflowed [45]. Function pointers are not always available though,
so other ways of exploiting heap-based overflows must be used. For example, by
overwriting a heap-allocated object’s virtual function pointer [140] and pointing
it to an attacker-generated virtual function table. When the application attempts
to execute one of these virtual methods, it will execute the code to which the
attacker-controlled pointer refers.

Dynamic memory allocators Function pointers or virtual function pointers
are not always available when an attacker encounters a heap-based buffer overflow.
Overwriting the memory management information that is generally associated
with a dynamically allocated block [162, 5, 91, 13] can be a more general way of
exploiting a heap-based buffer overflow.

The countermeasures we will be examining are often based on a specific imple-
mentation of a dynamic memory allocator called dlmalloc [107]. We will describe
this allocator in short and will describe how an attacker can manipulate the appli-
cation into overwriting arbitrary memory locations by overwriting the allocator’s
memory management information.

The dlmalloc library is a run-time memory allocator that divides the heap
memory at its disposal into contiguous chunks, that change size as the various
allocation and free routines are called. An invariant is that a free chunk never
borders another free chunk when one of these routines has completed: if two free
chunks had bordered, they would have been coalesced into a larger free chunk.

2.2 Implementation vulnerabilities and exploitation techniques 21

Lower addresses

Higher addresses

Size of previous chunk
Size of chunk1

Backward pointer

Old user data

Size of chunk1
Size of chunk2
Forward pointer

chunk2

chunk1 chunk3

chunk4

Size of previous chunk

Forward pointer
Backward pointer

Old user data

Size of chunk3

Size of previous chunk

Forward pointer
Backward pointer

Old user data

Size of chunk4

User data

Figure 2.5: Heap containing used and free chunks

These free chunks are kept in a doubly linked list of free chunks, sorted by size.
When the memory allocator at a later time requests a chunk of the same size as
one of these free chunks, the first chunk in the list will be removed from the list
and will be available for use in the program (i.e., it will turn into an allocated
chunk).

All memory management information (including this list of free chunks) is
stored in-band (i.e., the information is stored in the chunks: when a chunk is freed
the memory normally allocated for data is used to store a forward and backward
pointer). Figure 2.5 illustrates what a heap of used and unused chunks could look
like. Chunk1 is an allocated chunk containing information about the size of the
chunk stored before it and its own size2. The rest of the chunk is available for the

2The size of allocated chunks is always a multiple of eight, so the three least significant bits
of the size field are used for management information: a bit to indicate if the previous chunk
is in use or not and one to indicate if the memory is mapped or not. The last bit is currently
unused. The ”previous chunk in use”-bit can be modified by an attacker to force coalescing of
chunks. How this coalescing can be abused is explained later.

22
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Lower addresses

Higher addresses

Higher addresses

Lower addresses
Size of previous chunk

Injected Code

Return address f0
Saved Frame Pointer f0

Local variable f0
Local variable f0

Stack

Size of chunk1

Backward pointer

Old user data

Size of chunk1
Size of chunk2
Forward pointer

chunk2

chunk1 chunk3

chunk4

Size of previous chunk

Forward pointer
Backward pointer

Old user data

Size of chunk3

Size of previous chunk

Forward pointer
Backward pointer

Old user data

Size of chunk4

User data

Dummy

Code to jump
over dummy

Figure 2.6: Heap-based buffer overflow

program to write data in. Chunk23 shows a free chunk that is located in a doubly
linked list together with chunk3 and chunk4. Chunk3 is the first chunk in the
chain, followed by chunk2 and chunk4, respectively.

Figure 2.6 shows what could happen if an array that is located in chunk1
overflows: an attacker has overwritten the management information of chunk2.
The size fields are left unchanged in this case (although these could be modified
if needed). The forward pointer has been changed to point to 12 bytes before the
return address and the backward pointer has been changed to point to code that
will jump over the next few bytes. When chunk1 is subsequently freed, it will
be coalesced together with chunk2 into a larger chunk. As chunk2 will no longer

3The representation of chunk2 is not entirely correct: if chunk1 is in use, it will be used to
store ‘user data’ for chunk1 and not the size of chunk1. We have elected to represent it this way
as this detail is not relevant to the discussion.

2.2 Implementation vulnerabilities and exploitation techniques 23

be a separate chunk after the coalescence, it must first be removed from the list
of free chunks. The unlink macro takes care of this: internally a free chunk is
represented by struct containing the following unsigned long integer fields (in this
order): prev size, size, forward and back. A chunk is unlinked as follows:

Listing 2.1: Unlink macro
chunk2−>forward−>back = chunk2−>back
chunk2−>back−>forward = chunk2−>forward

Which is the same as (based on the struct used to represent malloc chunks):

Listing 2.2: Unlink macro expanded
∗(chunk2−>forward +12) = chunk2−>back
∗(chunk2−>back+8) = chunk2−>forward

So the value of the memory location located 12 bytes after the location that
forward points to will be overwritten with the value of back. And the value of the
memory location 8 bytes after the location that back points to will be overwritten
with the value of forward. So in the example in Figure 2.6 the return address
would be overwritten with a pointer to code that will jump over the place where
forward will be stored and will execute code that the attacker injected. As with
the indirect pointer overwrite this technique can be used to overwrite arbitrary
memory locations.

2.2.2 Dangling pointer references

Vulnerability

A dangling pointer reference is a pointer to a memory location that has been
deallocated either explicitly by the programmer (e.g., by calling free) or by code
generated by the compiler (e.g.,f a function epilogue, where the stackframe of the
function is removed from the stack). Dereferencing of such a pointer is gener-
ally unchecked in a C compiler, causing the dangling pointer reference to become
a problem. In normal cases this would cause the program to crash or exhibit
uncontrolled behavior as the value could have been changed at any place in the
program.

However, in some specific cases, if the program continues to write to memory
that has been released and reused, it could also result in an attacker being able to
overwrite information in a memory region that he was never supposed to write to.
Even reading of such memory could result in a vulnerability where information
stored in the reused memory is leaked.

24
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Lower addresses

Higher addresses

chunk1 chunk2 chunk3
Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Figure 2.7: List of free chunks

If a program continues to write to memory via a dangling pointer reference
after the memory has been released, it could overwrite data of an other object,
which may be of a different type. For example, if a program writes to an object
containing an array of characters via a dangling pointer reference, the new object
which is stored there may have stored a pointer there. This means the pointer
could be corrupted by the array of characters. Whether this kind vulnerability is
exploitable or not, is very program specific. As such, we will focus on a specific
example of such a write-after-free problem which is more generally exploitable:
the double free vulnerability. A double free vulnerability occurs when already
freed memory is deallocated a second time. This could again allow an attacker to
overwrite arbitrary memory locations [56].

Figure 2.7 is an example of what the list of free chunks of memory might look
like when using the dlmalloc memory allocator. Chunk1 is bigger than chunk2
and chunk3, meaning that chunk2 is the first chunk in the list of free chunks of
its size. When a new chunk of the same size as chunk2 is freed, it is placed at
the beginning of this list of chunks of the same size by modifying the backward
pointer of chunk1 and the forward pointer of chunk2.

When a chunk is freed twice it will overwrite the forward and backward pointers
and could allow an attacker to overwrite arbitrary memory locations at some later
point in the program.

Exploitation

As mentioned in the previous section: if a chunk (chunk4) of the same size as
chunk2 is freed it will be placed before chunk2 in the list. The following code
snippet does this:

2.2 Implementation vulnerabilities and exploitation techniques 25

Lower addresses

Higher addresses

chunk1 chunk2chunk4
Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Backward pointer

Size of previous chunk

Forward pointer
Size of chunk

Old user data

Figure 2.8: Chunk4 added to the list of free chunks (chunk3 not shown)

Listing 2.3: Adding a chunk to the list of free chunks
tmpback = f r o n t o f l i s t o f s a m e s i z e c h u n k s
tmpforward = tmpback−>forward
chunk4−>back = tmpback
chunk4−>forward = tmpforward
tmpforward−>back = tmpback−>forward = chunk4

The backward pointer of chunk4 is set to point to chunk2, the forward pointer
of this backward pointer (i.e., chunk2 → forward = chunk1) will be set as the
forward pointer for chunk4. The backward pointer of the forward pointer (i.e.,
chunk1 → back) will be set to chunk4 and the forward pointer of the backward
pointer (chunk2 → forward) will be set to chunk4. Figure 2.8 illustrates this
(chunk3 is not shown in this figure due to space restraints).

If chunk2 would be freed twice the following would happen (substitutions made
on the code listed above):

Listing 2.4: Freeing chunk2 twice
tmpback = chunk2
tmpforward = chunk2−>forward
chunk2−>back = chunk2
chunk2−>forward = chunk2−>forward
chunk2−>forward−>back = chunk2−>forward = chunk2

The forward and backward pointers of chunk2 both point to itself. Figure 2.9
illustrates what the list of free chunks looks like after a second free of chunk2.

If the program subsequently requests a chunk of the same size as chunk2 then
chunk2 will first be unlinked from the list of free chunks:

26
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Lower addresses

Higher addresses

chunk1 chunk2 chunk3
Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Figure 2.9: List of free chunks with chunk2 freed twice

Lower addresses

Higher addresses

chunk1 chunk2 chunk3
Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

Figure 2.10: Chunk2 reallocated as used chunk

Listing 2.5: Unlinking chunk2

chunk2−>forward−>back = chunk2−>back
chunk2−>back−>forward = chunk2−>forward

But since both chunk2 → forward and chunk2 → back point to chunk2, it
will again point to itself and will not really be unlinked. However the allocator
assumes it has and the program is now free to use the user data part the chunk
for its own use. Figure 2.10 illustrates where the program can now write.

Attackers can now use the same technique as was used in Section 2.2.1 to
exploit the heap-based overflow (Figure 2.11): they set the forward pointer to
point 12 bytes before the return address and change the value of the backward
pointer to point to code that will jump over the bytes that will be overwritten.
When the program tries to allocate a chunk of the same size again, it will again

2.2 Implementation vulnerabilities and exploitation techniques 27

Lower addresses

Higher addresses

Lower addresses

Higher addresses

Injected Code

chunk1 chunk2 chunk3
Size of previous chunk

Forward pointer
Backward pointer

Size of chunk
Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data Dummy

Code to jump
over dummy

Size of previous chunk

Forward pointer
Backward pointer

Size of chunk

Old user data

User
Data

Stack
Return address f0

Saved Frame Pointer f0
Local variable of f0
Local variable of f0

Figure 2.11: Overwriting the return address using a double free

try to unlink chunk2, which will overwrite the return address with the value of
chunk2′s backward pointer.

2.2.3 Format string vulnerabilities

Vulnerability

Format functions are functions that have a variable number of arguments and
expect a format string as argument. This format string specifies how the format
function will format its output. The format string is a character string that is
literally copied to the output stream unless a % character is encountered. This
character is followed by format specifiers that manipulate the way the output
is generated. When a format specifier requires an argument, the format func-
tion expects to find this argument on the stack (e.g., consider the following call:
printf(”%d′′, d)), here printf expects to find the integer d as second argument
to the printf call on the stack and will read this memory location and output it
to screen). A format string vulnerability occurs if an attacker is able to specify
the format string to a format function (e.g., printf(s), where s is a user-supplied
string). The attacker is now able to control what the function pops from the stack
and can make the program write to arbitrary memory locations.

28
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

20 01 00 00

20 30 00 00

20 0030 02 00

20 30 00 0040 03

40 50 04

Overwriting addr with 0x120

Overwriting addr + 1 with 0x230

Overwriting addr + 2 with 0x340

Overwriting addr + 3 with 0x450

Figure 2.12: Overwriting a value 1 byte at a time using %n specifiers

Exploitation

One format specifier is particularly interesting to attackers: %n. This specifier
writes the amount of characters that have been formatted so far to a pointer that
is provided as an argument to the format function [90].

Thus if attackers are able to specify the format string, they can use format
specifiers like %x (print the hex value of an integer) to pop words off the stack,
until they reach a pointer to a value they wish to overwrite. This value can
then be overwritten by crafting a special format string with %n specifiers [147].
However addresses are usually large numbers, especially if an attacker is trying
to execute code from the stack, and specifying such a large string would proba-
bly not be possible. However, format functions also accept minimum field width
specifiers when reading format specifiers. The amount of bytes specified by this
minimum field width will be taken into account when the %n specifier is used (e.g.,
printf(′′%08x′′, d) prints d as an eight digit hexadecimal number: if d has the dec-
imal value 10 it would be printed as 0000000a). This field width specifier makes
it easier to specify a large format string but the number attackers are required to
generate will still be too large to effectively be used. To overcome this limitation,
they can write the value in four parts: overwriting the return address with a small
value (normal integers on the IA32 overwrite four bytes), then overwriting the
return address + one byte with another integer, then return address + two bytes
and finally return address + three bytes.

The attacker faces one last problem: the amount of characters that have been
formatted so far is not reset when a %n specifier is written. If the address the
attackers want to write contains a number smaller than the current value of the
%n specifier this could cause problems. But since the attackers are writing one
byte at a time using a four-byte value, they can write larger values with the same
least significant byte (e.g., if attackers want to write the value 0x20, they could
just as well write 0x120). Figure 2.12 illustrates how an attacker would write
0x50403020 in an address using this technique.

2.3 Countermeasure properties 29

2.2.4 Integer errors

Integer errors [26, 195] are not exploitable vulnerabilities by themselves, but ex-
ploitation of these errors could lead to a situation where the program becomes
vulnerable to one of the previously described vulnerabilities. Two kinds of inte-
ger errors that can lead to exploitable vulnerabilities exist: integer overflows and
integer signedness errors.

• An integer overflow occurs when an integer grows larger than the value that
it can hold. The ISO C99 standard [90] mandates that unsigned integers that
overflow must have a modulo of MAXINT + 1 performed on them and the
new value must be stored. If an integer overflows, the resulting modulo will
make it wrap around 0 (i.e., 65536 + 2, will store the value 1 in a unsigned
16 bit integer). This can cause a program that does not expect this to fail or
become vulnerable: if used in conjunction with memory allocation, too little
memory might be allocated causing a possible heap overflow. For example,
if a program uses the integer together with an addition to make sure that
enough memory is allocated to hold a copy of a specific array, an integer
overflow could cause the program to allocate too little memory because the
value has wrapped around 0.

• Integer signedness errors on the other hand are more subtle: when the pro-
grammer defines an integer, it is assumed to be a signed integer, unless
explicitly declared unsigned. When the programmer later passes this integer
as an argument to a function expecting an unsigned value, an implicit cast
will occur. This can lead to a situation where a negative argument passes a
maximum size test but is used as a large unsigned value afterwards, possibly
causing a stack or heap overflow if used in conjunction with a copy opera-
tion (e.g., memcpy4 expects an unsigned integer as size argument and when
passed a negative signed integer, it assumes this is a large unsigned value).

Integer errors can cause problems for static analyzers that check for buffer
overflows, because they assume the existence of “infinite precision arithmetic”.
This means that they will not take into account that an integer could overflow.
This limitation can cause false negatives for static analyzers which are otherwise
considered sound.

2.3 Countermeasure properties

This survey aims to provide an understanding of the field of code injection attacks
to software engineers and computer scientists without specific security expertise.

4memcpy is the standard C library function that is used to copy memory from one location
to another

30
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Code Type
D Detection: Attacks on vulnerabilities are detected (i.e. after memory

has been corrupted)
P Prevention: The vulnerability is prevented and possibly detected (i.e.

before memory is corrupted)
M Mitigation: Exploitation is made harder, no explicit detection
C Containment: Limits the damage of exploitation

Table 2.1: Countermeasure type

We do this by providing a structured classification and evaluation framework of
countermeasures that exist to deal with these types of attacks. At the top level, we
classify existing countermeasures based on the main technique they use to address
the problem.

However, countermeasures also make different trade-offs in terms of perfor-
mance, effectiveness, memory cost, compatibility, etc.. In this section we define
a number of properties that can be attributed to each countermeasure. Based on
these properties advantages and disadvantages of different countermeasures can
be assessed.

2.3.1 Type

The types of protection that countermeasures provide are contained in Table 2.1.
Countermeasures that offer detection detect an attack when it occurs and take
action to defend the application against it, but do not prevent the vulnerability
from occurring. Prevention countermeasures attempt to prevent the vulnerability
from existing in the first place. As such, they are generally not able to detect when
an attacker is attempting to exploit a program as the vulnerability should have
been eliminated. Countermeasures that make it harder for an attacker to exploit
a vulnerability but that don’t actually detect an exploitation attempt are of the
type mitigation. Finally the last type of countermeasures are the ones that do not
try to detect, prevent or mitigate an attack or a vulnerability but try to contain
the damage that an attacker can do after exploiting a vulnerability.

2.3.2 Vulnerabilities

Table 2.2 contains a list of the vulnerabilities that the countermeasures in this
survey deal with. They reflect the scope of the vulnerabilities that the designer of
the countermeasure wished to address. However, in some cases a countermeasure
implicitly offers protection against exploitation for a certain kind of vulnerability
without explicitly being designed to protect against it (this is especially true for
integer errors) . In such cases we have also listed these vulnerabilities as being in

2.3 Countermeasure properties 31

Code Vulnerability
S Stack-based buffer overflow
H Heap-based buffer overflow
D Dangling pointer references
F Format string vulnerabilities
I Integer errors

Table 2.2: Vulnerability addressed by a countermeasure

Code Protection level
L Low assurance
M Medium assurance
H High assurance

Table 2.3: Protection level of a countermeasure

the scope of the countermeasure. For example, some bounds checking solutions
offer protection against exploitation of integer errors because integer errors are
usually abused to cause buffer overflows. Thus we have listed exploitation of
integer errors as being part of the protection offered by bounds checking solutions,
even though they do not offer explicit protection.

2.3.3 Protection level

This property describes the level of protection a countermeasure provides for the
vulnerabilities it was designed for.

Low assurance countermeasures

Low assurance countermeasures make exploiting a vulnerability harder, however
a method to bypass this countermeasure has been discovered and is practical. For
example, a return-into-libc attack is a practical attack on non-executable memory
countermeasures [188, 150].

Medium assurance countermeasures

Medium assurance countermeasures offer better protection than low assurance
countermeasures: as long as the assumptions that the countermeasure was built
on are preserved, no way of bypassing these countermeasures is currently known
that is practical. However, these assumptions do not always hold in the real
world. There may also be a way of bypassing these countermeasures which is not
immediately practical, but which may be possible. An example of countermeasures
that fall under this category are canary-based countermeasures that use random

32
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Code Stage
Imp Implementation
Test Debugging & Testing
Pack Packaging
Depl Deployment

Table 2.4: Stage of the software engineering process that a countermeasure is
applied at

numbers for protection. The random number must remain secret, which is an
assumption that does not always hold in the real world: attackers may be able to
find out the number through memory leaks. An attack may also be able to guess
the random number given enough attempts, even though the range of possibilities
may be too high to make this immediately practical (e.g. some countermeasures
have 232 possible combinations on a 32-bit systems).

High assurance countermeasures

High assurance countermeasures offer a high degree of assurance that they will
work against a specific vulnerability (e.g. if a countermeasure only targets buffer
overflows and has high assurance, it will only have high assurance for buffer over-
flows). Countermeasures which offer memory safety, type safety or can offer veri-
fiable guarantees will have a high assurance rating. For example, a safe language
that explicitly removes or checks constructs to prevent a specific vulnerability from
occurring will have a high assurance protection level. Sometimes weaker counter-
measures which still offer a high level of assurance will also fall in this section. For
example, a bounds checker which ensures that no object writes outside its bounds
will have a high assurance protection level even though it may be possible for an
attacker to overwrite a pointer inside a structure via another element in the same
structure (something many bounds checker will not detect because this is valid
according to the C standard: preventing this type of vulnerability would break
valid programs).

Static analyzers that do not suffer from false negatives for a given vulnerability
and set of assumptions (i.e. sound analyzers) will also fall under this category, since
they will alert the programmer of all occurrences of that vulnerability.

2.3.4 Usability

This property describes how the countermeasures can be applied. We differentiate
between two subproperties of usability: stage and effort.

Stage (Table 2.4) denotes where in the software engineering process the coun-
termeasure can be applied.

2.3 Countermeasure properties 33

Code Effort
Auto Automatic
ManS Small manual effort
ManL Larger manual effort

Table 2.5: Effort required to apply a countermeasure

None of the countermeasures in this survey operate on the requirement, analysis
or design stages of a product, so these stages have been left out of the table. Coun-
termeasures that affect the way an application is coded (i.e., safe languages and
static analysis tools) reside in the implementation stage. Tools that do dynamic
analysis fall under the debugging and testing stage. Some countermeasures are
compiled into the program, or modify the binary before it is shipped to customers.
These countermeasures operate at the packaging stage. Deployment countermea-
sures are only applied after the program has been shipped to the customer and
usually protect more than one application (e.g., kernel patches, sandboxes, etc.).

Effort (Table 2.5) describes the amount of effort required to use the countermea-
sure. We define a countermeasure to be automatic if it requires no further human
effort besides applying the countermeasure. Manual countermeasure requires more
effort for a countermeasure to be applied (e.g., annotations, modification of source
code). We also apply a modifier to quantify the amount of manual effort required,
small or large.

The effort properties should be viewed in combination with the way the coun-
termeasure is applied. A static countermeasure adds no code to protect against
a vulnerability but can never be fully automatic because it requires human inter-
vention to interpret the results (e.g., to fix the reported vulnerability). As such, if
we denote a static countermeasure as automatic, if it does not require annotations
or other help from the person running the analysis.

2.3.5 Limitations

In Table 2.6 we list the category of limitations in applicability of a countermea-
sure. Some countermeasures are implemented as hardware changes, this can be a
limiting factor in being able to apply a countermeasure. Other countermeasures
are implemented as modifications to the operating system. This is not as major a
limiting factor for applying a countermeasure as requiring hardware changes. In
some cases applying a countermeasure at the OS-level can even be a benefit: an
OS-based countermeasure should work for all software running on the OS. Some
countermeasures also require access to the source code or at least to the debugging
symbols, so that they can instrument the software that is being protected correctly.
In some cases, countermeasures will be incompatible with existing compiled code
like libraries. This is especially the case if they modify binary representations of

34
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Code Limitations
HW Hardware (or virtual machine) changes needed
OS Operating system changes needed
Src Source code required
Dyn Dynamically linked executable required
Deb Debugging symbols required
Inc Incompatible with existing compiled code
Chg Possible changes required in source code
Arch Architecture or operating system specific
False May suffer from false positives (identifies a program as vulnerable

when it’s not)

Table 2.6: Limitations of a countermeasure

particular datatypes (like pointers). Safe languages often require a programmer
to modify his source code so that it can become easier to analyze the code and
apply countermeasures. A few of the countermeasures described in this survey
rely on specific features of some architectures or operating systems. This makes it
unlikely that they could be ported to the other architectures without significant
reengineering. A number of countermeasures also suffer from false positives and/or
false negatives. However, if the countermeasure does not offer high assurance, it
suffers from false negatives. As such, we have added a property to denote whether
false positives are present or not to the limitations.

2.3.6 Computational and memory cost

The computational and memory costs give an estimate of the run-time cost a
specific countermeasure could incur when deployed. The values listed there are
provided as-is, in some cases it was extremely hard to determine the cost based
on the descriptions given by the authors and as such some values in these columns
might not be entirely accurate. The costs range from none to very high for both
computational and memory cost.

For dynamic countermeasures the costs are measured as a comparison to run-
ning non-instrumented programs. The costs of these countermeasures cannot be
compared to the costs of static analysis. Costs for countermeasures that use static
analysis are measured in running time of the analysis.

2.4 Countermeasures

In this section we provide a description of the different categories of countermea-
sures and an overview of the properties of specific countermeasures. At the top

2.4 Countermeasures 35

Code Cost
? Unknown
0 None
−− Very low
− Low
−+ Medium
+ High

++ Very high

Table 2.7: Computational and memory cost of a countermeasure

level, we distinguish between ten categories based on the main technique that was
used to design the countermeasure. Each of these categories is discussed in a sepa-
rate subsection. We first describe the key ideas behind the category, and the main
advantages and disadvantages. Next, we provide a table listing all proposed coun-
termeasures in that category. The table evaluates each of the countermeasures by
providing values for each of the properties discussed in the previous section.

Categories may overlap, i.e., some countermeasures could be placed in one
category or in another. This is because many countermeasures will use a variety
of techniques to provide protection. When this was the case, we chose the most
important technique or the most novel technique discussed in the countermeasures’
paper to determine the category to place the countermeasure in.

For some categories of countermeasures we describe specific subtechniques.
For example, within the static analysis category, we discuss various techniques
on which a static analyzer can be based. When such techniques are discussed,
an extra column ”Tech” is added to the table of properties to denote the specific
technique that was used to implement specific countermeasures.

Finally, for some categories, all countermeasures have the same value for all
countermeasures in that category. When this is the case, the column for that prop-
erty is dropped from the table for clarity. The description of the category always
notes if a column was dropped and shows which value it would have contained.

2.4.1 Safe languages

Safe languages are languages in which it is generally not possible for one of the
vulnerabilities discussed in Section 2.2 to exist as the language constructs prevent
them from occurring (this means they could be memory safe, type safe or neither).
A number of safe languages are available that prevent the kinds of implementation
vulnerabilities discussed in this text. Examples of such languages include Java and
ML, but these are not in the scope of our discussion since this survey focuses on
C and C++. Thus we will only discuss safe languages which remain as close to C
or C++ as possible: these safe languages are mostly referred to as safe dialects of

36
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

C. Some dialects [121] will only need minimal programmer intervention to compile
programs, while others [87, 116] require substantial modification. Others [98]
severely restrict the C language to a subset to make it safer or will prevent behavior
that the C standard marks as undefined [124].

In an attempt to prevent dangling pointer references, memory management is
handled differently by these safe languages: in some cases the programmer is not
given explicit control over deallocation anymore (i.e., the free operation is either
replaced with a no-operation or removed altogether). In the languages listed in
Table 2.8 three types of memory management are used to prevent dangling pointer
references:

Garbage collection does not deallocate memory instantaneously, but defers this
to a scheduled time interval or till memory constraints require it to be col-
lected. When garbage collection is done, only memory to which no refer-
ences exist is deallocated, preventing pointers from referring to deallocated
memory [29]. An important problem with using garbage collection for C
programs, however is that C programs will generally not clear all pointers
to a memory location when they free that location. As such, using garbage
collection without modifying the program could result in the program using
an unacceptable amount of memory.

Region-based memory management deallocates regions as a whole, memory
locations can no longer be deallocated separately. A pointer to a memory
location can only be dereferenced if the region that this memory location
resides in is marked ”live”. Programmers can manually allocate memory in
such a region but can only deallocated the region as a whole. This intro-
duces some problems with objects that live too long, as a result of being
placed in a region that remains live very long. As such this type of memory
management usually requires garbage collection, to deallocate heap-based
objects (which are in one large region). However by ensuring that a pointer
is unique upon deallocation (i.e., the pointer has no aliases), a programmer
can safely deallocate memory without causing dangling pointer references
[80].

Automatic Pool Allocation makes use of a points-to graph to allocate objects
that have the same node in the points-to graph in a same pool in the heap.
As a result, all objects of the same type are allocated in the same pool.
This allows programmers to manually allocate and free memory in the heap.
While dangling pointer references may occur, they point to the same type
of object in memory. As a result, it is harder to break memory safety when
Automatic Pool Allocation is used [106].

To prevent the remaining implementation errors that we described in Section
2.2, several techniques are usually combined: firstly static analysis can be per-
formed to determine if a specific construct can be proven safe. If the construct

2.4 Countermeasures 37

cannot be proven safe, then run-time checks are added to prevent errors at run-
time (e.g., if use of a specific array cannot statically be determined to be safe
then code that does run-time bounds checking might be added). To aid this static
analysis, pointers are often divided into different types (e.g., never-null pointers
that are guaranteed to never contain a NULL value) depending on the amount of
checking that should be added at runtime. Some of the safe languages infer these
pointer types automatically, while others expect the programmer to explicitly use
new types of pointers.

Name Type Vulns Assur. Stage Effort Lim Cost
Cyclone [87] P All H Imp ManL Src +Chg − + / −

+
Ccured
[121]

P All H Imp ManS Src +
Chg

+/+

Vault [105] P All H Imp ManL Src +
Chg

?/?

Control-C
[55, 98]

P All H Imp ManL Src +
Chg

?/?

Fail-Safe C
[124]

P All H Pack ManS Src +
Chg

+/+

Xu et al.
[193]

P SHDI H Pack Auto Src +
Chg

+/+

SAFECode
[54]

P SHD H Pack ManS Src +
Chg

−+ /+

Deputy [43] P SH H Imp ManS Src +
Chg

−+ /+

Table 2.8: Safe languages

Table 2.8 gives an overview of the safe languages we examined. Some global
properties can be gathered from the table: none of the languages support all
constructs in C: some programs will need to be modified. Though the effort
required to implement these changes varies,this is reflected in the effort property
in Table 2.8.

Most languages work at the implementation level: the programmer either im-
plements his program directly for the language or modifies his program to make it
work. Fail-safe C [124] on the other hand is not a new language, it is a C compiler
that attempts to make C safer by preventing behavior which is listed as undefined
by the C standard. As a result, it will not compile all programs because many
programs will rely on a specific compiler-dependent behavior of a compiler. For
example, the C standard lists creating a pointer which points more than one ele-
ment past the end of an array as undefined behavior, however many programs will
expect to be able to do this. This was evidenced by the need for an extension to

38
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

the Jones & Kelly bounds checker, to allow programs to create such out of bounds
pointers [144].

Control-C [55, 98] is also of particular interest because it does not add dynamic
checks when compiling a program: it restricts the C language to a specific subset
and makes a number of assumptions about the runtime system (it is designed to
run on the Low Level Virtual Machine (LLVM) system, where all memory and
register operations are type safe).

The computational and memory costs of these languages are inversely related
to the amount of effort required to port a program to the language: small effort
means higher overheads while larger effort means lower overheads.

2.4.2 Bounds checkers

Bounds checkers provide extensive protection against exploitation of buffer over-
flows: they check array indexation and pointer arithmetic to ensure that they do
not attempt to write to or read from a location outside of the space allocated for
them.

Two important techniques are used to perform traditional full bounds checking:

• Adding bounds information to all pointers. These bounds checkers add extra
information to all pointers: besides the current value of the pointer, the
lower and upper bound of the object the pointer refers are also stored. This
information can be stored in two ways: by changing the representation of the
pointer itself to include all this information (these are called fat pointers) or
by storing the extra information in a table for each pointer and to look it up
when needed. When the pointer is used, a check is performed to make sure
it does not write beyond the bounds of the object it refers to. A problem
with fat pointers is that they are incompatible with existing code that was
compiled with another compiler: fat pointers must be cast back and forth.
If a pointer is modified by unchecked code (e.g., if it is a global variable) it
may point into a new object. When it is later checked, it is found to be out
of bounds, because the bounds information associated with it still refers to
the original object.

• Adding bounds information for objects. Pointers remain the same, but a
table stores the bounds information of all objects. Using the pointer’s value,
it can be determined what object it is pointing to. Then, pointer arithmetic
is checked: the bounds of the object the pointer refers to is looked up and
if the result of pointer arithmetic would make the pointer point outside the
bounds of the object, an overflow has been detected. Pointer use is also
checked to make sure that the pointer points to a valid object.

While the previous two techniques are used to perform the traditional bounds
checking, this category also contains other bounds checkers which do some kind of

2.4 Countermeasures 39

bounds checking but are different with respect to the traditional checkers in that
they do not strive for checking of all objects. Some of the latter countermeasures
ensure that a string manipulation function only writes inside the stack frame that
the destination pointer is pointing to [11, 159] or ensure that the function does
not write past the bounds of the destination string [10].

RICH [32] is another special kind of bounds checker: it is not a bounds checker
in the traditional sense. It does not check bounds of arrays or pointers but makes
sure that integers do not overflow. This type of checking can prevent integer errors
from occurring. However since the C standard specifically allows integer overflows,
the countermeasure suffers from false positives: it can flag a problem when correct
and safe code that relies on integer overflows is executed.

Name Type Tech Vulns Assur. Stage Effort Lim Cost
Bcc [94] P Ptr

Chk
SHI H Pack Auto Src +/+

RTCC
[165]

P Ptr
Chk

SHI H Pack ManS Src +
Chg

+/+

Safe C[8] P Ptr
Chk

SHDI H Pack Auto Src +
Inc

+/+

Jones et
al. [89]

P Obj
Chk

SHI H Pack ManS Src +
Chg

+ + / +
+

Suffield
[168]

P Obj
Chk

SHI H Pack ManS Src +
Chg

+ + / +
+

Lhee et
al. [110]

P Obj
Chk

SHI M Pack Auto Src +
Libc

−+ /+

CRED
[144]

P Obj
Chk

SHI H Pack Auto Src + + / +
+

Rinard et
al. [138]

P Obj
Chk

SHI H Pack Auto Src + + / +
+

Dhurjati
et al. [52]

P Obj
Chk

SHI H Pack Auto Src −+ /?

Guarding
[128]

P Ptr
Chk

SHDI H Pack Auto Src +
Chg

+ + / +
+

Nethercote
et al.
[122]

P Obj
Chk

SHDI L Depl Auto Dyn
+
Deb

+ + / +
+

Cash
[101]

D Ptr
Chk

SHI A Pack
+
Depl

Auto Src +
Arch
+ OS

−/−+

Rinard et
al. [137]

P Obj
Chk

SHI H Pack Auto Src ++/+

40
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Libsafe-
Plus
[10]

P Other SHI M Depl Auto Deb
+
Dyn
+
Libc

− + / −
+

Libsafe
[11]

D Other S L Depl Auto Dyn
+
Libc

−/−

Snarskii
[159]

D Other S L Depl Auto Dyn
+
Libc

−/−

Healers
[64]

D Other H L Depl Auto Dyn
+
Libc

+/+

RICH
[32]

D Other I M Pack Auto Src +
False
+
Chg

− − / −
−

Table 2.9: Bounds Checkers

From Table 2.9 it is clear that most traditional full bounds checkers that offer
high assurance suffer from a high computational and memory overhead.

2.4.3 Probabilistic countermeasures

Many countermeasures make use of randomness when protecting against attacks.
Many different approaches exist when using randomness for protection. Canary-
based countermeasures use a secret random number that are stored before an
important memory location: if the random number has changed after some opera-
tions have been performed then an attack has been detected. Memory-obfuscation
countermeasures encrypt (usually with XOR) important memory locations or other
information using random numbers. Memory layout randomizers randomize the
layout of memory: by loading the stack and heap at random addresses and by
placing random gaps between objects. Instruction set randomizers encrypt the
instructions while in memory and will decrypt them before execution,

Canaries

The observation that attackers usually try to overwrite the return address when
exploiting a buffer overflow led to a sequence of countermeasures that were de-
signed to protect the return address. One of the earliest examples of this type of

2.4 Countermeasures 41

protection is the canary-based countermeasure [49]. This type of countermeasure
protects the return address by placing a value below it on the stack that must
remain unchanged during program execution. Upon entering a function the ca-
nary is placed on the stack below the return address. When the function returns,
the canary stored on the stack will be compared to the original canary. If the
stack-stored canary has changed an overflow has occurred and the program can
be safely terminated. A canary can be a random number, or a string that is hard
to replicate when exploiting a buffer overflow (e.g., a NULL byte). StackGuard
[47, 49] was the first countermeasure to use canaries to offer protection against
stack-based buffer overflows. However, attackers soon discovered a way of bypass-
ing it using indirect pointer overwriting. Attackers would overwrite a local pointer
in a function and make it point to a target location. When the local pointer is
dereferenced for writing, the target location is overwritten without modifying the
canary (see Section 2.2.1 for a more detailed description). Propolice [62] is an
extension of StackGuard: it fixes these type of attacks by reordering the stack
frame so that buffers can no longer overwrite pointers in a function. These two
countermeasures have been extremely popular: Propolice has been integrated into
the GNU C Compiler and a similar countermeasure has made its way into Visual
Studio’s compiler [30, 73].

Canaries were later also used to protect other memory locations, like the man-
agement information of the memory allocator that is often overwritten using a
heap-based buffer overflow [100].

Obfuscation of memory addresses

Memory-obfuscation countermeasures use an approach that is closely related to
canaries: their approach is also based on random numbers. These random numbers
are used to ‘encrypt’ specific data in memory and to decrypt it before using it in
an execution. These approaches are currently used for obfuscating pointers (XOR
with a secret random value) while in memory [48]. When the pointer is later used
in an instruction it is first decrypted in a register (the decrypted value is never
stored in memory). If an attacker attempts to overwrite the pointer with a new
value, it will have the wrong value when decrypted. This will most likely cause
the program to crash. A problem with this approach is that XOR encryption is
bytewise encryption. If an attacker only needs to overwrite 1 or 2 bytes instead of
the entire pointer, then the chances of guessing the pointer correctly vastly improve
(from 1 in 4 billion to 1 in 65000) [4]. If the attacker is able to control a relatively
large amount of memory (e.g., with a buffer overflow), then the chances of a
successful attack increase even more. While it is possible to use better encryption,
it would likely be prohibitively expensive since every pointer needs to be encrypted
and decrypted this way. The idea of encrypting data in memory was later extended
in [19].

42
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Address Space Layout Randomization

ASLR is another approach that makes executing injected code harder. Most ex-
ploits expect the memory segments to always start at a specific known address.
They will attempt to overwrite the return address of a function, or some other
interesting address with an address that points into their own code. However for
attackers to be able to point to their own code, they must know where in memory
their code resides. If the base address is generated randomly when the program
is executed, it is harder for the exploit to direct the execution-flow to its injected
code because it does not know the address at which the injected code is loaded.
Shacham et al. [151] examine limitations to the amount of randomness that such
an approach can use 5. Their paper also describes a guessing attack that can be
used against programs that use forking as the forked applications are usually not
rerandomized, which could allow an attacker to keep guessing by causing forks and
then trying until the address is found.

Instruction set randomization

ISR is another technique that can be used to prevent the injection of attacker-
specified code. Instruction set randomization prevents an attacker from injecting
any foreign code into the application by encrypting instructions on a per process
basis while they are in memory and decrypting them when they are needed for
execution. Attackers are unable to guess the decryption key of the current process,
so their instructions, after they’ve been decrypted, cause the wrong instructions to
be executed. This prevents attackers from having the process execute their payload
and has a large chance crashing the process due to an invalid instruction being
executed. However if attackers are able to print out specific locations in memory,
they can bypass the countermeasure since the encryption key can often be derived
from encrypted data (since most countermeasures will use XOR). Other attacks
are described in [180]. Two implementations (by Barrantes et al. and Kc et al.)
[12, 93] examined in this survey incur a significant run-time performance penalty
when unscrambling instructions because they are implemented in emulators, but
it is entirely possible, and in most cases desirable, to implement them at the
hardware level thus reducing the impact on run-time performance.

Name Type Tech Vulns Assur. Stage Effort Lim Cost
Stack-
Guard
[49]

D Can S L Pack Auto Src −/−

5This limitation is due to address space limitations in 32-bit architectures: often countermea-
sure will limit randomness to a maximum amount of bits, which will be less than 32 bit, making
guessing attacks a possibility.

2.4 Countermeasures 43

Bray et
al. [30]

D Can S M Pack Auto Src −/−

Propolice
[62]

D Can S M Pack Auto Src −/−

Robertson
et al.
[142]

D Obfus H A Depl Auto Dyn −/−

Contra-
police
[100]

D Can H A Depl Auto Dyn
+
Libc

−/−

Stack-
Ghost
[67]

D Obfus S L Depl Auto Arch −/−

Point-
Guard
[48]

M Obfus All L Pack Auto Src −+ /−

Zhu et al.
[205]

D Obfus All L Pack Auto Src −/−

HSAP
[153]

D Bchk /
Obfus

SH L Pack Auto HW
+
Chg

−− /0

Hu et al.
[84]

D ISR All M Depl Auto HW − + / +
+

Barrantes
et al.[12]

M ISR All L Depl Auto HW +/+

Kc et al.
[93]

M ISR All L Depl Auto HW −/+

PaX
ASLR
[170]

M Mem
Rand

All L Depl Auto OS −− /−

TRR
[190]

M Mem
Rand

All L Depl Auto - −/−+

Chew et
al. [41]

M Mem
Rand

S L Depl Auto OS −/−

Bhatkar
et al. [18]

M Mem
Rand

All L Depl Auto - 0/−

DieHard
[14]

D Mem
Rand

H M Depl Auto Dyn − + / −
+

Bhatkar
et al. [20]

M Mem
Rand

All M Pack
+
Depl

Auto Src −/0

44
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Bhatkar
et al. [19]

M Obfus All M Pack Auto Src +/?

Table 2.10: Probabilistic countermeasures

None of these countermeasures can offer a complete protection against the
code injection attacks described in Section 2.2. They all rely on the fact that
memory must remain secret. If an attacker is able to read out memory (through a
format string vulnerability or another type of attack), then the countermeasures
can be bypassed entirely. However, a major advantage of these approaches is that
they have low computational and memory overheads, making them better suited
for production environments. A notable exception to the previously described
limitation that memory must remain secret is the work by Hu et al. [84]. In this
paper an approach to instruction set randomization is described that makes use of
AES encryption6 [51] for instructions. This can reduce the risk that is posed by
an attacker being able to read memory locations and finding out the key. Another
advantage of the stronger encryption is that the countermeasure knows for sure
if an instruction is correct or not, rather than relying on it being invalid if the
attacker does not know the key.

2.4.4 Separation and replication of information

Countermeasures that rely on separation or replication of information will try to
replicate valuable control-flow information or will separate this information from
regular data. This makes it harder for an attacker to overwrite this information
using an overflow. Some countermeasures will simply copy the return address from
the stack to a separate stack and will compare it to or replace the return addresses
on the regular stack before returning from a function. These countermeasures are
easily bypassed using indirect pointer overwriting where an attacker overwrites a
different memory location instead of the return address by using a pointer on the
stack. More advanced techniques try to separate all control-flow data (like return
addresses and pointers) from regular data, making it harder for an attacker to use
an overflow to overwrite this type of data.

2.4.5 Paging-based countermeasures

Paging-based countermeasures make use of the Virtual Memory Manager, which
is present in most modern architectures. Memory is grouped in contiguous regions
of fixed sizes (4Kb on Intel IA32) called pages. Virtual memory is an abstraction
above the physical memory pages that are present in a computer system. It allows
a system to address memory pages as if they are contiguous, even if they are

6Advanced Encryption Standard a.k.a Rijndael is a block cipher

2.4 Countermeasures 45

Name Type Vulns Assur. Stage Effort Lim. Cost
StackShield
[173]

D/M S L Pack Auto Src −/−

RAD [42] D S L Pack Auto Src − + / −
−

Xu et al.
[191]

M/D S L Depl Auto Src / HW − − / −
−

SmashGuard
[127]

D S L Depl Auto HW − − / −
−

Lee et al.
[109]

D S L Depl Auto HW − − / −
−

Libverify
[11]

D S L Depl Auto Dyn −+ /−

Libparanoia
[158]

D S L Depl Auto Dyn +
Libc

−/−

dnmalloc
[200]

M HD M Depl Auto Dyn − − / −
+

multistack
[201]

M S M Depl Auto Src − − / −
+

Prasad et
al. [133]

D S L Depl Auto - − − / −
−

Smirnov et
al. [156]

D S L Pack Auto Src −− /?

Table 2.11: Separation Countermeasures

stored on physical memory pages that are not. An example of this is the fact that
every process in Linux starts at the same address in the virtual address space,
even though physically this is not the case. Another advantage of virtual memory
is the fact that all application seemingly have 4GB of RAM (on 32 bit systems)
available, even if the machine does not have that much physical RAM available.
This also allows for the concept of swapping, where memory is written to disk
when it is not in active use so the physical memory can be reused for active
applications. Translation of virtual memory to physical memory is handled by a
memory management unit (MMU), which is present in most architectures.

Pages can have specific permissions assigned to them: Read, Write and Exe-
cute. Many of the countermeasures in this section will make use of paging permis-
sions or the fact that multiple virtual pages can be mapped onto the same physical
page.

Countermeasures in this category can be divided into two subcategories:

Non-executable memory (NX) makes data memory non-executable. Most

46
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

operating systems divide process memory into at least a code (also called
the text) and data segment. The code segment is marked as read-only, pre-
venting a program from modifying code that has been loaded from disk into
this segment (unless the program explicitly requests write permissions for
the memory region). Because of this, attackers have to inject their code into
the data segment of the application. As most applications do not require ex-
ecutable data segments (because all their code is in the code segment), some
countermeasures mark this memory as non-executable, which will make it
harder for an attacker to inject code into a running application. A major
disadvantage of this approach is that an attacker could use a code injec-
tion attack to execute existing code. One type of such an attack is called a
return-into-libc attack [188, 150]. Instead of injecting code on the stack and
then pointing the return address to this code, the desired parameters are
placed on the stack and the return address is pointed to existing code. For
example, if attackers use the return address to return to the libc wrapper
for the system() system call and pass a string containing the location of an
executable as argument. This allows the attackers to execute arbitrary code
without injecting actual code into the memory of application, they will only
execute existing code. The countermeasures discussed in this subcategory
were a work-around for the fact that Intel mapped the page read permission
to the page execute permission, which meant that if a page was readable,
it was also executable. This has been remedied on recent versions of the
Intel architecture, and NX is now available as an option in many operating
systems.

Guard page-based countermeasures use properties of the virtual memory
manager to add protection against attacks. Electric Fence [129] for exam-
ple allocates each chunk of heap memory on a separate page and will place
a guard page (a page without read, write or execute permissions assigned
to it) behind it. If the program writes past its bounds, it writes into the
guard page, which causes the program to be terminated for accessing invalid
memory.

2.4.6 Execution monitors

Execution monitors monitor specific security relevant events (like system calls)
and perform specific actions based on what is monitored. Some monitors try to
limit the damage a successful attack on a vulnerability could do to the underlying
system by limiting the actions a program can perform. Others detect if a program
is exhibiting unexpected behavior and provide alerts if this occurs. The first type
of execution monitor is called a sandbox, while the second type is called anomaly
detection. In this section we also discuss fault isolation, which ensures that certain
parts of software cannot cause an entire system to fail.

2.4 Countermeasures 47

Name Type Tech Vulns Assur. Stage Effort Lim Cost
Solar
Designer
[161]

M DEP S L Depl Auto OS 0/0

PaX
[170]

M DEP All L Depl Auto OS +/0

Electric
Fence
[129]

D Page H L Test Auto Dyn +/+

Dhurjati
et al.
[53]

D Page D M Depl Auto Src + + / −
−

Table 2.12: Paging-based countermeasures

Sandboxing is based on the ”Principle of Least Privilege” [145, 146], where an
application is only given as much privileges as it needs to be able to complete its
task. This can be enforced in a number of ways:

• Policy enforcement: a clear policy is defined, specifying what an applica-
tion specifically can and cannot do. Generally enforcement is done through
a reference monitor where an application’s access to a specific resource7 is
regulated. An example of such a countermeasure enforces a policy on system
calls that the application is allowed to execute, making sure that the appli-
cation cannot execute system calls that it would not normally need. Others
attempt to do the same for file accesses by changing the program’s root di-
rectory (chroot) and mirroring files under this directory structure that the
program can access.

• Fault isolation ensures that certain parts of software do not cause a complete
system (a program, a collection of programs, the operating system, . . .) to
fail. The most common way of providing fault isolation is by using address
space separation. However, this causes expensive context switches to occur
that incur a significant overhead during execution. Because the modules are
in different address spaces, communication between the two modules also
incurs a higher overhead. Although some fault isolation countermeasures
will not completely protect a program from code injection, the proposed
techniques might still be useful if applied with the limitation of what injected
code could do in mind (i.e., run-time monitoring as opposed to transforming
source or object code).

Many of the techniques that are used for sandboxing can be used for anomaly
7The term resource is used in the broadest sense: a system call, a file, a hardware device, . . .

48
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

detection. In many cases the execution of system calls is monitored and if they do
not correspond to a previously gathered pattern, an anomaly is recorded. Once a
threshold for anomalies is reached, the anomaly can be reported and subsequent
action can be taken (e.g., the program is terminated or the system call is denied).
However, attackers can perform a mimicry attack against these anomaly detec-
tors [177] and some policy enforcers. These attacks mimic the behavior of the
application that is modeled by the anomaly detector. They may be able to get
the application in an unsafe state by mimicking the behavior that the detector
would expect to be performed before the state is reached, but reaching the state
nonetheless. For example: if an application ever performs an execve8 system call
in its lifetime, the attacker could execute the system calls that the detector would
expect to see before executing the execve call.

Not all policy enforcers are vulnerable to mimicry attacks.The granularity pro-
vided by such an enforcer will influence how easy it is for an attacker to perform
a mimicry attack. For example, if all system calls and their arguments are logged,
mimicry becomes harder because the attackers must not only execute system calls
in the correct order, they must also provide the correct arguments. If a policy
enforcer is very granular, the only behavior the attacker can mimic is the behav-
ior that was already provided by the program. An example of a granular policy
enforcer is provided by Control Flow Integrity [1]. The basic policy is that the pro-
gram must follow it’s control flow graph: whenever the program transfers control,
it must transfer it to a valid location. These locations are calculated beforehand by
determining the control flow graph of the program. Then, a unique ID is assigned
to each possible control flow destination of a control flow transfer. Before trans-
ferring control flow to such a destination, the ID of the destination is compared
to the expected ID, and if they are equal, the program proceeds as normal.

Name Type Tech Vulns Assur. Stage Effort Lim Cost
SFI [179] C Fault All L Depl Auto - −/−
Janus
[72]

C Policy All M Depl ManL - −− /0

Forrest et
al. [66]

D Det All L Depl Auto - +/+

MiSFIT
[155]

C Fault All M Depl Auto - +/−

SASI [61] C Policy All L Depl ManL - +/−
Naccio
[63]

C Policy All L Depl ManL Dyn +/−

8When a program calls the execve system call the current process is replaced with a new
process (passed as an argument to execve) that inherits the permissions of the currently running
process.

2.4 Countermeasures 49

Sekar et
al. [149]

D Det All L Depl Auto - +/−+

FMAC
[134]

C Policy All M Depl Auto - −− /0

Wagner
et al.
[177]

D Det All M Depl Auto - + + / −
+

Program
Shep-
herding
[96]

C Policy All H Depl Auto - +/+

Systrace
[135]

C Policy All M Depl ManS - −/0

Yong et
al. [194]

P Policy SHD M Pack Auto Src +/+

Linn et
al. [112]

C Policy All L Depl Auto - −/−−

Ringenburg
et al.
[139]

D Policy F M Pack Auto Src −− /0

Control
Flow
Integrity
[1]

C Policy All H Pack Auto - -+/–

McCamant
et al.
[114]

C Fault All M Depl Auto - −+ /−

Data
Flow
Integrity
[37]

P Policy All M Pack Auto Src +/+

Table 2.13: Execution monitors

2.4.7 Hardened libraries

Hardened libraries replace library functions with versions that contain extra
checks. An example of these are libraries that offer safer string operations: more
checks will be performed to ensure that the copy is within bounds, that the desti-
nation string is properly NULL terminated (something strncpy does not do if the
string is too large). Other libraries check whether format strings contain ‘%n’ in
writable memory [141] (and will fail if they do) or will check to ensure that the

50
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

amount of format specifiers are the same as the amount of arguments passed to
the function [46].

Name Type Vulns Assur. Stage Effort Lim Cost
Miller et al.
[118]

P SH L Imp ManL Src 0/0

SafeStr
[115]

P SHF L Imp ManL Src ?/−

Format-
Guard [46]

D F M Depl Auto Libc −− /0

Libformat
[141]

D F L Depl Auto Libc −− /0

Table 2.14: Hardened Libraries

2.4.8 Runtime taint trackers

Taint tracking is an important type of countermeasure for web-based vulnerabili-
ties. It is ideally suited for detecting cross-site scripting, SQL injection, command
injection and other similar vulnerabilities in web applications [132, 192]. These
taint trackers instrument the program to mark input as tainted9. If such input is
used in a place where untainted data is expected (like an SQL query), an error is
reported. Taint tracking can also be used to detect the vulnerabilities described in
Section 2.2. In this case, the taint tracker will generate an error when an trusted
memory location (like a return address) has been modified by tainted data.

Name Type Vulns Assur. Stage Effort Lim Cost
TaintCheck
[123]

D SHD M Depl Auto False + + /+

Chen et al.
[38]

D SHDF M Depl Auto HW +
OS +
False

?/?

Xu et al.
[192]

D All M Pack Auto Src +
False

+/?

Suh et al.
[169]

D SHF M Depl Auto HW +
False

− − / −
−

Table 2.15: Runtime taint trackers

One important limitation with these taint trackers is that they suffer from
false positives. Such a false positive can occur when a tainted data is used in a

9Tainted data is data which is untrusted, usually derived from input

2.4 Countermeasures 51

place where untainted data is expected but is not actually vulnerable to attack.
For example, if a format string is derived from tainted data and used as format
specifier to printf, however a check has occurred to ensure that this tainted data
is in fact benign. A taint tracker may report this as a vulnerabilty, while it is in
fact safe code. However, most of the countermeasures described here had few to
no false positives in the tests performed by the designers of the countermeasures.
This can be an important limitation in situations where no false positives can be
tolerated.

2.4.9 Dynamic analysis and Testing

Dynamic analyzers instrument the application with checks and run-time informa-
tion that attempt to find buffer overflows or other vulnerabilities. Most of these
tools are designed to be used during testing phases: the analysis is used instead
of static analysis because more information is available at run-time. Other testing
tools will generate runs of the program with specific input so that the program
fails.

A number of different techniques are used to perform these checks:

Fuzzers generate runs of the program with specific input and monitor whether
the program fails. The tools in this survey instrument the program to give
information about a program to the fuzzer so that it can provide more precise
input.

General analysis performs a similar analysis to static analyzers, but instruments
the program so the program performs the checks itself and reports the results
back to the user. An example of this is to add a check whether an index for
an array could possibly have a value that is outside the bounds of an array.

Table 2.16 contains a number of dynamic analyzers adn testing tools.

2.4.10 Static Analysis

Static analyzers are generally used during the implementation or audit phases of
an application, although they can also be used by compilers to decide whether a
specific run-time check is necessary or not (as is done by safe languages and some
other countermeasures). They do not offer any protection by themselves but are
able to point out what code might be vulnerable. They operate by examining the
source code of a particular application. They can be as simple as just searching the
code for specific known vulnerable functions (strcpy, gets, . . .), or as complicated
as building a complete model of the running application.

However, determining statically, for any possible input program, whether a
program will contain an overflow or not, is undecidable: it is trivial to reduce this
problem to the halting problem [136]. So all analyzers will contain a number of

52
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Name Type Vulns Assur. Stage Effort Lim Cost
STOBO [78] P SH M Test ManS Src ?/?
Purify [77] P HD M Test Auto - + + /+
Muse [104] P SHDI M Test Auto Src + + / −

+
FIST [70] P S M Test ManS Src ?/?
Fink et al.
[65]

P All M Test ManL Src ?/?

OBOE [33] P S L Test Auto - +/−
Cadar et al.
[36]

P SH M Test ManS Src ?/?

Table 2.16: Dynamic Analysis and Testing

false positives (the amount of correct code that is incorrectly reported as being
vulnerable), false negatives (vulnerable code that is not reported as such) or both.
The main criteria for determining the effectiveness of a source code analyzer is
the false positive to total warnings ratio, the completeness (i.e., are false negatives
possible or not) and how well they scale to larger, real-world software systems. It
is important to note the difference between sound and unsound static analyzers:
sound analyzers will find all possible overflows, usually at the expense of generating
more false positives and being less scalable while unsound analyzers try to find
the right balance between false positives, false negatives and being able to analyze
larger systems than sound analyzers.

Several types of analyzers exist. In Table 2.17 we have grouped the analyzers
into subtypes based on the main analysis that is performed. Since all analyzers
are used at the implementation stage, we have omitted the stage column from the
table for these countermeasures.

• Lexical analyzers are very simple and fast. Unlike most static analyzers they
do not parse the source code to do analysis, instead they analyze a program
at the lexical level and match code to a vulnerability database that con-
tains a list of unsafe functions or functions that are misused in many cases.
They then display a potential risk factor and a description of the possible
vulnerability. When they have identified possibly vulnerable functions they
match them against possible safe or unsafe uses of the functions and deter-
mine if they are to be reported and with which level of severity. For example
strcpy(dst, ”\n”); will usually not be reported as a potential vulnerability
because the source string is fixed and consequently the potential risk factor
is extremely low.

• Verifiers convert the program into a language that lends itself better to verifi-
cation. Using rules that specify preconditions, side effects and postconditions

2.4 Countermeasures 53

of different operations, the program is augmented with this information. The
verifier will then ensure that these pre- and postconditions are adhered to.

• Taint analyzers mark all data derived from an untrusted source (e.g., the
network, user input, etc.) as tainted. If they detect that this data is later
used in a place where untainted data is expected (e.g., as a format specifier
for a format string function) without first being marked as safe, they generate
an error.

• Symbolic executors are static analyzers that build an execution model of
the source code they are analyzing. They simulate execution of actions
performed by execution paths and use this to build a model of the program.
The results of these actions are then assigned to the values associated with
them in the program. When such a value is later used, the analyzer can
more accurately determine whether the usage is safe.

• Integer range analyzers model arrays in programs as a number of integers,
usually denoting the total number of bytes allocated to an array and the
number of bytes in use by the array when an action is taken. These analyzers
generate constraints that must hold after a specific operation is performed
on an array. If a constraint can be violated by an operation, it is reported
as a possible overflow.

Table 2.17: Static Analyzers

Name Type Tech Vulns Assur. Stage Effort Lim Cost
Splint
[103]

P Avrfy SHF M Imp ManL Src −/−

CSSV
[57]

P Avrfy SH H Imp ManL Src +/ + +

Shankar
et al.
[152]

P Ataint F M Imp ManL Src −/−

Meta-
compil-
ation
[6]

P Ataint I M Imp ManL Src ?/?

PREfix
[35]

P Asym SHD M Imp ManS Src ++/+

PREfast
[105]

P Asym SHD M Imp ManS Src −/−

ARCHER
[189]

P Asym SHD M Imp ManS Src +/?

54
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

Simon et
al. [154]

P Avrfy SH H Imp ManS Src ?/?

BOON
[178]

P Aint SH M Imp ManS Src -+/?

Rugina et
al. [143]

P Asym SH M Imp ManS Src ?/?

Ganapathy
et al. [69]

P Aint SH M Imp ManS Src ?/?

Eau
Claire
[40]

P Avrfy SH M Imp ManS Src ?/?

ITS4
[174]

P Alex SHF L Imp ManL Src − − / −
−

Flaw-
Finder
[181]

P Alex SHF L Imp ManL Src − − / −
−

RATS
[148]

P Alex SHF L Imp ManL Src − − / −
−

Hackett
et al. [76]

P Avrfy SH M Imp ManS Src ?/?

Blanchet
et al. [25]

P Asym SHD M Imp ManL Src +
Chg

+/+

UNO [81] P Avrfy SH M Imp ManS Src −/−

2.5 Related work

A lot of work has been done in categorizing vulnerabilities [2, 7, 21, 22, 23, 24, 82,
102] in many different taxonomies. Each of these has its own relative strengths
and weaknesses, However, little work has been done in categorizing the available
countermeasures to some important vulnerabilities. Cowan et al. [50] have exam-
ined some countermeasures to buffer overflows. They examine a set of defenses
including bounds checking modifications (Compaq c-compiler, Jones&Kelly com-
piler) safe languages (Java and ML), debugging tools (Purify), library patches
(Snarskii FreeBSD patch) and compiler modifications (StackGuard and an early
idea for PointGuard). Most of these countermeasures are only mentioned briefly,
while only StackGuard and PointGuard are examined more in depth.

Wilander and Kamkar have published two documents in this area, one relating
to static countermeasures [186] and one describing dynamic ones [187]. Wilan-
der and Kamkar’s documents are limited to publicly available tools with most
focus being on comparing existing production tools. In [186], they examine ITS4,
Flawfinder, RATS, Splint and BOON for comparison while in [187] they compare

2.6 Conclusion 55

StackGuard, Stack Shield, Propolice, Libsafe and Libverify. In these documents
they examine how effective these countermeasures are at respectively finding vul-
nerabilities in source code and preventing a wide range of attacks.

Lhee and Chapin [111] performed an extensive survey on techniques for exploit-
ing buffer overflows and format string vulnerabilities. While they focus mainly on
exploitation techniques, they also provide an overview of some countermeasures
designed to stop buffer overflows and format string vulnerabilities. One of our
main goals is to provide a comprehensive survey of countermeasures for vulnera-
bilities that could allow code injection. To achieve this, our vulnerability section
contains more vulnerabilities: dangling pointer references and integer errors are
not considered in the Lhee and Chapin paper. Because of the difference in focus we
also discuss more countermeasures and provide a synthesis that allows the reader
to weigh the advantages and disadvantages of using one specific countermeasure
as opposed to using another more easily.

Erlingsson [60] performed a survey in parallel to our survey which examines a
number of attacks against and defenses for C-like languages.

2.6 Conclusion

Stack-based buffer overflows have been a very important source of vulnerabilities in
programs written in C. It was the type of attack most often found and was the first
type of vulnerability that was exploited to gain code execution. Since then many
countermeasures have been designed that protect against attacks against stack-
based buffer overflows. However attackers have also discovered new techniques to
exploit vulnerabilities in C programs: besides stack-based buffer overflows, other
types of vulnerabilities were soon discovered. Attackers also designed several ap-
proaches to bypass countermeasures. This has led to more complex countermea-
sures that attempted to solve these problems. Which in turn led to a classic arms
race between attackers and countermeasure designers. A classic example of this
is StackGuard [49]. Due to its popularity attackers started looking for new ways
to exploit stack-based buffer overflows that would bypass the protection offered
by this type of countermeasure [34]. This led to the development of Propolice
[62], which countered the technique used to bypass StackGuard described in [34].
Further countermeasures addressed some of the shortcomings of these countermea-
sures, which could still allow an attacker to bypass the countermeasure.

Attackers also discovered new types of vulnerabilities and as a result, new
countermeasures were designed to protect against these vulnerabilities and new
methods of bypassing them were discovered.

In this survey we presented an overview of the most commonly exploited vul-
nerabilities that lead to code injection attacks. More importantly however, we also
presented a survey of the many countermeasures that exist to protect against these
vulnerabilities together with a framework for evaluating and classifying them. We

56
Code injection in C and C++ :

a survey of vulnerabilities and countermeasures

described the many techniques used to build countermeasures and discussed some
of their advantages and disadvantages. We also assigned specific properties to each
of the countermeasures that allow the reader to evaluate which countermeasures
could be most useful in a given context.

Although this survey tried to be as complete as possible when discussing the
different countermeasures that exist, it can never be entirely complete. Counter-
measure design is an active field, so this survey can only provide a snapshot of the
current state of the field with respect to specific countermeasures. However, we
believe we have a strong framework that can be applied to future countermeasures
to further evaluate and classify these new countermeasures.

Chapter 3

Extended protection against
stack smashing attacks
without performance loss

This chapter contains a paper that discusses a countermeasure that
provides efficient protection against stack-based buffer overflows. Based
on what was learned from conducting the survey in Chapter 2, a
methodology [199] was designed to more effectively design countermea-
sures against code injection attacks. During the design of this method-
ology we suggested the idea of separating control-flow data (data that is
used to regulate the control flow of the program, like a return address)
from regular data, similarly to how many operating systems separate
code from data. When this was applied to the stack, a number of other
types of data became relevant that could also be used by attackers to
gain code execution (e.g., by modifying data pointers to perform indi-
rect pointer overwriting or by modifying an integer which is later used
as an offset in pointer arithmetic). An evaluation of all the types of
data that are stored on the stack was performed and based on this eval-
uation, each data type was assigned a target and source value. The
target value determines how useful the memory location is to attack-
ers if they were to control it. The source value determines how useful
this type of data would be to an attacker when performing an actual
attack. Based on the values assigned during the evaluation of the data
types, the stack is then split into multiple stacks, preventing data with
different source and target values from overwriting each other. This
separation of code data from regular data provides efficient protection
against stack-based buffer overflows without relying on random num-

57

58 Extended protection against stack smashing attacks without performance loss

bers that must remain secret, offering protection even in the face of
an attacker who has complete read access to the address space of the
process.

This paper was written together with Davide Pozza, Frank Piessens
and Wouter Joosen. It was published in the proceedings of the Twenty-
Second Annual Computer Security Applications Conference [201].

3.1 Introduction 59

Abstract

In this paper we present an efficient countermeasure against stack smashing at-
tacks. Our countermeasure does not rely on secret values (such as canaries) and
protects against attacks that are not addressed by state-of-the-art countermea-
sures. Our technique splits the standard stack into multiple stacks. The allocation
of data types to one of the stacks is based on the chances that a specific data ele-
ment is either a target of attacks and/or an attack source. We have implemented
our solution in a C-compiler for Linux. The evaluation shows that the overhead
of using our countermeasure is negligible.

3.1 Introduction

Buffer overflow vulnerabilities are a significant threat to the security of a system.
Most of the existing buffer overflow vulnerabilities are located on the stack, and
the most common way for attackers to exploit such a buffer overflow is to use it to
modify the return address of a function. By making the return address point to
code they injected into the program’s memory as data, they can force the program
to execute any instructions with the privilege level of the program being attacked
[3].

According to the NIST’s National Vulnerability Database [120], 584 buffer
overflow vulnerabilities were reported in 2005, making up 12% of the 4852 vul-
nerabilities reported that year. In 2004 the amount of reported buffer overflow
vulnerabilities was 341 (14% of 2352). This means that, while the amount of re-
ported vulnerabilities has almost doubled in the past year, buffer overflows still
remain an important source of attack. 418 of the 584 buffer overflows reported
in 2005 had a high severity rating, this makes up 21% of the 1923 vulnerabilities
rated with a high severity level. They also make up 42% of the vulnerabilities that
allow an attacker to gain administrator access to a system.

Stack-based buffer overflows have traditionally made up the largest bulk of
these buffer overflows, and are the ones most easily exploited by attackers. Many
countermeasures have been devised that try to prevent code injection attacks [198].
Several approaches attempt to solve the vulnerabilities entirely [8, 89, 94, 124, 144,
193]. However, they generally suffer from a substantial performance impact. Other
types of countermeasures have been developed with better performance results
that specifically target stack-based buffer overflows. These countermeasures can
be divided into four categories. A first category [49, 62] offers protection by using
a random value, which must be kept secret from an attacker. If the program leaks
this information (e.g., through a ‘buffer over-read’ or a format string vulnerability)
the protection can be bypassed entirely. A second category [11, 42, 172, 191]
copies the return address and the saved frame pointer, and compares or replaces
them when the function returns. While this protects against the return address

60 Extended protection against stack smashing attacks without performance loss

being overwritten, it does not protect other information stored on the stack (e.g.,
pointers) that could be used by an attacker to execute arbitrary code. A third
category tries to correct the library functions that are typically the source of an
overflow (e.g., strcpy) [11]. however, these libraries do not protect against buffer
overflows that could occur at a different place in the program (e.g., an overflow
caused by a loop). A fourth category tries to make attacks harder by modifying
the operating system [12, 18, 93, 161, 170] or hardware [109, 191].

In this paper we present a new approach for protecting against stack based
buffer overflows by separating the stack into multiple stacks. This separation is
done according to the type of data stored on the stack. Each stack is protected
from writing into the other stack by a guard page1. Our countermeasure offers
equal or better performance results than the countermeasures in the categories
discussed earlier and does not suffer from some of their weaknesses: it does not
rely on random numbers and protects pointers as well as the return address and
frame pointer. In [199] we describe a more global approach to separating control
flow data from regular data and in [200] we discuss applying it to the heap to
separate the metadata from the regular data.

The paper is structured as follows: Section 3.2 briefly describes the technical
details of the stack-based buffer overflow, some representative countermeasures
and their weaknesses. Section 3.3 discusses the design and implementation of our
countermeasure. Section 3.4 evaluates our countermeasure in terms of performance
and security. In Section 3.5 we discuss limitations of and possible improvements
to our approach and describe ongoing work. Section 3.6 compares our approach
to existing countermeasures, while Section 3.7 presents our conclusions.

3.2 Stack-based buffer overflows2

Buffer overflows are the result of an out of bounds write operation on an array. In
this section we briefly recap how an attacker could exploit such a buffer overflow
on an array that is allocated on the stack.

When an array is declared in C, space is reserved for it and the array is manip-
ulated by means of a pointer to the first byte. At run-time no information about
the array size is available and most C-compilers will generate code that will allow
a program to copy data beyond the end of an array, overwriting adjacent memory
space. If interesting information is stored somewhere in such adjacent memory
space, it could be possible for an attacker to overwrite it. On the stack this is
usually the case: it stores the addresses to resume execution at after a function
call has completed its execution, i.e., the return address.

1A guard page is page of memory where no permission to read or to write has been set. Any
access to such a page causes the program to terminate.

2This section discusses the problem of stack-based buffer overflows, a more extensive discussion
on the topic of vulnerabilities can be found in section 2.2

3.2 Stack-based buffer overflows 61

For example, on the IA32-architecture the stack grows down (i.e., newer func-
tion call have their variables stored at lower address than older ones). The stack is
divided into stackframes. Each stackframe contains information about the current
function: arguments to a function that was called, registers whose values must be
stored across function calls, local variables, the saved frame pointer and the return
address. An array allocated on the stack will usually be contained in the section
of local variables of a stackframe. If a program copies data past the end of this
array it will overwrite anything else stored before it and thus will overwrite other
data stored on the stack, like the return address.

Several countermeasures were designed against this attack: ranging from
bounds checkers to operating system changes. Many of these are discussed in
Section 3.6. Here, we discuss two of the most used countermeasures that protect
against this attack.

StackGuard [49] was designed to be an efficient protection against this type
of attack: it protects the return address by placing a randomly generated value
(called a canary) between the saved frame pointer and the local variables on the
stack. This canary is generated at program start up and is stored in a global
variable. When a function is called, the countermeasure puts a copy of the canary
onto the stack after the saved frame pointer. Before the function returns, the
canary stored on the stack is compared to the global variable: if they differ, the
program will be terminated. If an attacker would want to overwrite the return
address, he would have to know the canary, so he could replace it. A significant
problem with this approach is the fact that the program cannot leak the canary,
if it did, the attacker could just write the correct value back on the stack and the
protection would be bypassed.

Figure 3.1 depicts the stack layout of a program protected with StackGuard and
illustrates an attack called indirect pointer overwriting [34]. This attack consists
of exploiting a local buffer to overwrite a pointer p1 stored in the same stackframe
and to make the pointer refer to the return address. When the pointer is later
dereferenced for writing, it overwrites the return address rather than the value
it was originally pointing to. If attackers can control the value that the program
writes via the pointer, they can modify the return address to point to their injected
code.

ProPolice [62] attempts to protect against this type of attack by reorganizing
the local variables stored in each stackframe: all arrays are stored before all other
local variables in each stackframe. This prevents an attacker from using an over-
flow to overwrite a pointer and using an indirect pointer overwrite to bypass the
protection.

However, as mentioned earlier, this type of protection has some limitations: if
a program leaks the canary (e.g., through a format string vulnerability or a ‘buffer
over-read’), the protection can be bypassed completely. Another point of attack

62 Extended protection against stack smashing attacks without performance loss

Return address f0
Saved frame

pointer f0

Local variables f0

Arguments f1

Return address f1
Saved frame

pointer f1

Buffer

Injected code

Higher addresses

Lower addresses

Lo
ca

l v
ar

ia
bl

es
 f1

 f0:
int i1

...
call f1

...

 f1:
int *p1;

char buffer[]
...

overflow()
*p1 = ...

...

Pointer p1

12
Canary f1

Canary f0

Code

Figure 3.1: Indirect pointer overwriting attack

3.3 The multiple stacks countermeasure to protect against buffer overflow
vulnerabilities 63

is to use a buffer overflow to overwrite an array of pointers3 in a program, or to
use a structure that contains a buffer to overwrite another structure that does
contain a pointer. It also does not protect against memory that is allocated with
the alloca4 function, if an overflow occurs in memory allocated using this call, it
could be used to perform an indirect pointer overwrite.

In the next section we discuss our approach that aims to better protect against
these attacks, while still preserving or improving the performance of the previously
described countermeasures.

3.3 The multiple stacks countermeasure to pro-
tect against buffer overflow vulnerabilities

This section describes the approach of the multiple stacks countermeasure by de-
scribing the basic concepts behind its design, as well as how it was implemented.

3.3.1 Approach

The stack stores several kinds of data: some data is related to control flow, such
as stored registers, but it also contains regular data like the local variables of a
function. If the control data is modified, an attacker may be able to inject code.
However, modifying the regular data can sometimes also be used by an attacker
to inject code (e.g., pointers could allow indirect pointer overwriting).

In this section we describe an approach which separates the stack into multiple
stacks based on two criteria: how valuable data is to an attacker when it is a target
for attack, and the risk of the data being used as an attack source (i.e., abused
to perform an attack). These properties are not mutually exclusive: some data
could be both a target and a source. So, we must evaluate all possible data types
and place them in categories according the risk of being an attack source and the
effective value.

We can assign data a ranking based on its risk of being an attack source and
the value it has as a target. Data can have a low, medium, or high ranking for
both properties (e.g., the return address has a high target value because attackers
generally want to overwrite it, and a low source value because it can’t be attacked
directly). Based on these rankings we can divide the data into different categories.
This is illustrated in Table 3.1, where we use six categories.

In principle, one can always argue for other categories or combinations. How-
ever, we decided to limit these categories to six based on how we perceive the

3an array of pointers is a contiguous memory region containing only pointers, no structures
4alloca is used to dynamically allocate space on the stack, it behaves in much the same way

as the malloc function, except that the memory it allocates will be released when the function
returns.

64 Extended protection against stack smashing attacks without performance loss

Table 3.1: Attack source versus attack target categories

XXXXXXXXXXSource
Target

Low Medium High

Low cat. 3 cat. 2 cat. 1
Medium cat. 5 cat. 3 cat. 2

High cat. 5 cat. 4 cat. 6

combined risk/value resulting from the combination of attack source risk and at-
tack target value. We believe that the presented set of six categories is a good
approximation. The main objective of this section is to show that a multiple stacks
countermeasure (based on several categories) can be supported efficiently.

Category one contains highly valuable data and there is only a low risk of it
being used as an attack source. This is the main category that we wish to
protect from buffer overflows.

Category two represents two cells from the summary table: data which has a
low risk of being an attack source, but a medium target value, and data that
has a medium risk of being a source, but is also a high-value target. We
consider both these two types of data to have a similar combined risk/value.

Category three contains data which has a medium risk of being a source, but is
also only a medium-value target. We have supplemented it with data that
has the least importance in our countermeasure: low on source-risk and low
on target-value. Mainly, it does not matter where this type of information
is placed since it needs no protection and can’t be used to attack. As such,
we decided on placing it in a middle category.

Category four contains data that has a high risk of being an attack source, but
which is also a medium-value target. So, there is some need for protection.

Category five contains data that has a high or medium risk of being a source,
but has only low value as a target. It contains both high and medium risk
data, because the data needs to be isolated from higher-value targets, but
does not need to be protected.

Category six is the hardest data to protect. It is both a high-value target and
has a high risk of being used as an attack source. We place it in a separate
category because it needs both extra protection and we need to protect other
data from this type of data.

3.3 The multiple stacks countermeasure to protect against buffer overflow
vulnerabilities 65

We can now decide what information to put in each of these categories by
assigning them rankings of their target-value and attack source-risk.

The Return address is the most obvious target for attack: if an attacker can
modify it, he can easily execute injected code. However, an attacker does
not directly control the return address, so it is an unlikely source.

• Attack target: High; Attack source: Low

Other saved registers on the stack, like the saved frame pointer and the caller-
save and callee-save registers could be used to attack a program [97]. So,
all these are valuable targets, but generally an attacker cannot use them to
mount an attack.

• Attack target: High; Attack source: Low

Pointers can contain reference functions or data. If a function pointer is over-
written, an attacker can directly execute injected code. If a data pointer is
overwritten, an attack could use indirect pointer overwriting, so these are
very likely targets for attacks. However, they cannot be used as an attack
source, unless they can be modified by an attacker.

• Attack target: High; Attack source: Low

Integers can sometimes be used to store pointers or indices to pointer operations,
so they can be considered attack targets. They are not attack sources in the
sense that they could directly overwrite other information on the stack.

• Attack target: Medium; Attack source: Low

Floating types are not valuable targets because they will not generally contain
information that could lead to code injection (either directly or indirectly).
They are also unlikely attack sources because they can’t be used directly to
overwrite adjacent memory locations.

• Attack target: Low; Attack source: Low

Arrays are assigned different target values and attack source-risks depending on
their type:

Arrays of pointers are valuable targets, because they contain pointers,
and as such could be used to perform an indirect pointer overwrite, if
modified. However, there is also a chance that an operation on an array
of pointers could lead to writing outside the bounds of the array. Thus,
there is a risk of it being used as an attack source as well. However,
these type of arrays are not generally used with functions that are prone
to buffer overflows (e.g., strcpy and related functions), so this risk is not
as high as with arrays of characters.

66 Extended protection against stack smashing attacks without performance loss

• Attack target: High; Attack source: Medium
Arrays of characters are the traditional arrays that are most vulnerable

to buffer overflows. The risk of them being used as an attack source
is high, especially since they are also often used with unsafe copying
functions. They do not contain any information that could indirectly
or directly lead to a code injection attack.
• Attack target: Low; Attack source: High

Other arrays are possible targets because an integer in an array of integers
could be used to store a pointer. As with arrays of pointers, they are
possible sources, since an out of bounds write could occur, but they are
not generally used with the most dangerous functions.
• Attack target: Medium; Attack source: Medium

Arrays of structures and unions are discussed separately.

Structures/unions are assigned different target values and attack source-risks
depending on the type of the data they contain:

Structures containing no arrays at any level (structures and unions can
contain other structures or unions) are unlikely attack sources, but
possible targets because they possibly contain pointers.
• Attack target: Medium; Attack source: Low

Structures containing arrays of characters are likely sources because
a buffer overflow could occur in the character array. They are also
possible targets because they could contain pointers.
• Attack target: Medium; Attack source: High

Structures containing other arrays are possible sources, because over-
flows could occur. They are also a target because the structure or union
could be used to store a pointer.
• Attack target: Medium; Attack source: Medium

Arrays of structures/unions Arrays of structures are a special case because
the structures or unions stored in such an array can contain arrays at some
level.

Not containing arrays of characters If the structures or unions inside
the array do not contain arrays of characters at any level, we treat
them the same as other arrays: possible targets and possible sources.
• Attack target: Medium; Attack source: Medium

Containing arrays of characters As previously mentioned for structures
or unions containing character arrays: they are a likely source, and a
possible target.

3.3 The multiple stacks countermeasure to protect against buffer overflow
vulnerabilities 67

• Attack target: Medium; Attack source: High

Based on these assignments and Table 3.1, the different categories contain the
following data:

Category one : return address, other saved registers, pointers.

Category two : arrays of pointers, structures and unions (no arrays), integers.

Category three : floating types, other arrays, structures/unions containing ar-
rays but not arrays of characters at any levels, arrays of structures that do
not contain arrays of characters at any level.

Category four : structures containing array of characters, arrays of structures
containing arrays of characters

Category five : arrays of characters

Category six is the hardest to protect, thankfully it is empty in our risk/value
evaluation. There is no data on the stack that we consider to have high risk of
being an attack source but is also a high-value target. An exception to this is
in a program where an array of characters is passed to an interpreter (e.g., the
system() function). This data could be stored in category six. However, since the
existence of this type of data is very application-specific we consider it outside the
scope of our countermeasure.

As with the different categories, the actual value that we have assigned specific
data is based on the value or risk that we perceive it to have. If some data would
be assigned a different risk or value by someone else, resulting in it being placed in
a different category, this would only require minimal modification of our existing
countermeasure.

The main principle used to design this countermeasure is to separate infor-
mation in these different categories from each other by storing them on separate
stacks. As such they can no longer be overwritten by information that has been
moved to a different stack. Figure 3.2 depicts the memory layout if we were to
map the five categories that contain data onto five different stacks.

It is however fairly simple to modify our design (and our implementation) to
support other stack configurations depending on the amount of risk that these
data types or categories present (or if the risk of a particular category or data
type can be diminished or abolished entirely) in a particular application versus
the amount of memory that can be used. An example of this would be to support
only two stacks, and to place categories one, two and three on the first stack, while
storing categories four and five on the second stack.

68 Extended protection against stack smashing attacks without performance loss

Guard page

Stack 1

Pointers

Saved
registers

Guard page

Stack 2
Arrays of
Pointers

Structures (no
arrays)

Guard page

Stack 3
Structures (no

char array)
Array of struct
(no char array)

Arrays

Guard page

Stack 4
Structures
(with char

array)
Arrays of
structures
(with char

array)
Guard page

Stack 5

Arrays of
characters

Alloca()Integers Floats

Figure 3.2: Stack layout for 5 stacks

3.3.2 Implementation

The multiple stack countermeasure was implemented in gcc-4.1-20050902 for Linux
on the IA32 architecture. Each stack is stored sequentially after the other and
each stack is protected from the previous one using a guard page. We start off
by allocating the different stacks at a fixed location from one another. This fixed
location is the maximum size that the stack can grow to (this must be known
at compile time). As long as no information is written to the specific pages that
were allocated for the stack, the program only uses virtual address space, rather
than physical address space so we can easily map all stacks into memory without
wasting any physical memory5.

The countermeasure was implemented in the pass of the compiler that converts
the GIMPLE representation6 into RTL7.

We implement our countermeasure by modifying the way local variables are
accessed in a function. When a function is called in a program, the return address
is stored on the stack. To access local variables of a function, the current value
of the register containing the stack pointer is copied to the frame pointer register
(and the current frame pointer is saved on the stack). This frame pointer is used
as a fixed location to access a function’s local variables (all variables are accessed
as an offset to the frame pointer), this mechanism is used because the value of the
register containing the stack pointer is changes whenever a variable is pushed or
popped from the stack. The compiler calculates the offset to the frame pointer
for local variables at compile time and uses this offset whenever it accesses this
variable. When the function returns, the saved frame pointer is restored into the

5While this will not cause physical memory overhead, the use of a large amount of virtual
address space will use up more page table entries, resulting in performance overhead.

6GIMPLE is a language- and target-independent tree representation of the program being
compiled. The compiler will convert the program into static single assignment form (SSA) at
this level.

7RTL is the register transfer language, a language-independent, but target-dependent, inter-
mediate representation used by the compiler to do some optimizations.

3.3 The multiple stacks countermeasure to protect against buffer overflow
vulnerabilities 69

Stack 1 Stack 2

Return address f1
Saved frame

pointer f1
Pointer p1

Higher addresses

Lower addresses

Array of
characters

Pointer p2

Figure 3.3: Gaps on the different stacks

frame pointer register.
We use this mechanism to efficiently implement our countermeasure: instead

of using multiple stack pointers, we modify the offset to the frame pointer that is
used to access the variable. We add (stacknr − 1) ∗ (sizeofstack + pagesize) to
the offset, which results in the access of the variable on the correct stack. As a
consequence, all operations that use this variable use the correct stack to address
it. This also means our countermeasure doesn’t incur any overhead because the
offset is simply a larger constant value, but the instruction to access it remains
the same8.

Because the program is instrumented in this way, the stack pointer remains
unchanged and effectively controls all five stacks. The advantage is that setjmp
and longjmp9 work unchanged. The drawback of this countermeasure is that it
results in gaps on the remaining stacks, resulting in wasted memory. Figure 3.3
depicts this for two stacks. We provide a more detailed discussion on the memory
overhead in Section 3.4.

A special case, that we did not address in the design and the categories above,
is memory allocated with alloca. The information stored in it could be both an
attack source to overwrite other memory and could contain information that could
be used to perform a code injection attack (e.g., a function or data pointer). The
third category contains data which has both a medium risk of being a source of

8This is true for the IA32 architecture, but architectures which have a maximum offset size
may incur a higher overhead because extra instructions are needed to calculate the offset

9The longjmp function jumps to the most recent place in the code where a setjmp was ex-
ecuted, resetting the stack pointer (and other registers) to the value they held at the moment
setjmp was called.

70 Extended protection against stack smashing attacks without performance loss

attack, but also contains data which has a medium target value. Since this is
exactly what the memory allocated by alloca would fall under, it is placed on
stack three. Given this, we chose to modify this call to allocate memory on stack
three in the case of five stacks and stack two in the case of two stacks.

3.4 Evaluation

To test the performance overhead, we ran several benchmarks on programs in-
strumented with our countermeasure (running with 5 stacks) and without. All
tests were run on a single machine (Pentium 4 2.80 Ghz, 512MB RAM, no hyper-
threading, running Ubuntu Linux 5.10 with kernel 2.6.12.10). The GCC compiler
version 4.1-20050902 was used to compile all benchmarks.

3.4.1 Performance

This section evaluates our countermeasure in terms of performance overhead. Both
macro- and microbenchmarks were performed.

Macrobenchmarks

We ran the full SPEC R© CPU2000 Integer reportable benchmark [79], which gives
us an idea of the overhead associated with general-purpose single-threaded pro-
grams. All programs in benchmarks except for 252.eon (it is written in C++,
while our prototype implementation is only for C) were used to perform these
benchmarks.

Table 3.2 contains the amount of code present in a particular program (ex-
pressed in lines of code), the runtime in seconds10 when compiled with the un-
modified gcc and the runtime when compiled with our multistack countermeasure.
The results in this table show that the performance overhead of using our coun-
termeasure is negligible for most of these programs. There is a slightly higher
overhead of 2-3% for the programs vortex and twolf. The negative overheads in
the table are so low that they can be attributed to normal variations between runs
and, as such, these overheads can be considered equivalent.

To determine which stacks were used most, we statically determined how many
local variables were stored on the stack for each program. The numbers in Table
3.3 reflect the local variables which are assigned stack positions by the compiler and
are then separated onto different stacks by our countermeasure. If a program has
0 local variables for a specific stack, that does not mean that the program does not
make use of data types that may be stored on this stack: the compiler may decide
to put a local variable solely in registers, which would mean it wouldn’t be part of

10Since the results in this table represent one run of the benchmarks, no standard error is
specified

3.4 Evaluation 71

SPEC CPU2000 Integer benchmarks
Program LOC Gcc 4.1 (s) Multistack (s) Overhead
164.gzip 8,616 201 201 0%
175.vpr 17,729 213 212 -0.47%
176.gcc 222,182 89.7 89.8 0.11%
181.mcf 2,423 248 249 0.4%

186.crafty 21,150 116 115 -0.86%
197.parser 11,391 257 255 -0.78%

253.perlbmk 85,185 150 151 0.67%
254.gap 71,430 101 101 0%

255.vortex 67,220 169 174 2.96%
256.bzip2 4,649 204 203 -0.49%
300.twolf 20,459 291 297 2.06%

Microbenchmarks
loop 20 9.166 ± 0.029 9.2 ± 0.015 0.37%

fibonacci 14 3.354 ± 0.004 3.363 ± 0.005 0.27%

Table 3.2: Benchmark results of the multistack approach

SPEC CPU2000 Integer benchmarks
Program Stack 1 Stack 2 Stack 3 Stack 4 Stack 5
164.gzip 4 8 9 0 3
175.vpr 9 36 17 0 21
176.gcc 150 217 171 2 109
181.mcf 1 6 0 0 1

186.crafty 0 15 17 3 30
197.parser 0 11 2 0 11

253.perlbmk 43 349 18 0 37
254.gap 18 7 1 0 25

255.vortex 664 1092 7 10 27
256.bzip2 0 0 11 0 8
300.twolf 0 79 11 0 26

Total 889 1820 264 15 298

Table 3.3: Local variables stored on each stack

72 Extended protection against stack smashing attacks without performance loss

our measurements. Besides local variables like pointers, stack 1 will always contain
the return address and other saved registers which are automatically saved to this
stack by the compiler. Since these must not be separated by our countermeasure,
they are also not part of the measurement described here.

Microbenchmarks

Two programs that make extensive use of the stack were run as a microbench-
mark. One program (called loop in the table) which simply calls a function 1
million times. This function performs an addition of two local variables (filled
with ‘random’11 values), fills a local array with this random value, and allocates
and frees a chunk of random size. The second program performs a recursive Fi-
bonacci calculation of the 42nd Fibonacci number. These programs were each
run 100 times both compiled with the unmodified gcc and our multistack coun-
termeasure. Table 3.2 contains the average runtime in seconds, followed by the
standard error for both versions (since the SPEC CPU2000 benchmark was run a
single time, no standard error is reported for it). Both the unmodified gcc and our
multistack countermeasure have very comparable performance, we conclude from
this that our modifications only add negligible overheads for function entry and
exit. The main performance overhead found in the macrobenchmarks is likely due
to caching issues.

These results also confirm that the performance overhead of using our coun-
termeasure is negligible.

3.4.2 Memory overhead

The maximum memory overhead of this countermeasure will be the original stack
usage multiplied by the number of stacks that are used.

Because variables are accessed by simply adding a constant value to the frame
pointer, we end up with gaps on all stacks and waste space on all stacks. To
reduce the waste, it is possible to implement a version where we calculate the
actual location that the variable is on for every stack. This would eliminate gaps
in a function entirely. Some gaps would still exist between function calls (because
we still only have one stack pointer), but these could be reduced to be equal to
the amount of space used on the largest stack. This still allows us to use a single
stack pointer, because all other stacks will continue to have gaps, but these gaps
will be smaller than in the current implementation. Since all these calculations
can be done at compile time, no extra performance overhead would be incurred.

11We use a fixed seed for the random function, so the generated values are the same over
different runs.

3.5 Discussion and ongoing work 73

3.5 Discussion and ongoing work

Most applications will never increase the default stack size. However, applications
that do need a larger stack, may be limited in the size their stack may grow
to a predetermined maximum, since the location of the stacks must be set to a
fixed location when the program is compiled. If the maximum size that the stack
could grow to is known beforehand (programs that need more stack space will
increase their stack size with a system call at runtime, however often this new size
is provided as a constant in the source code, rather than dynamically calculated),
the locations of the different stacks can easily be changed to accommodate a larger
stack. The application would only lose virtual address space when moving the
stacks further apart and would not use any extra physical memory until the data
is written to these pages. We discuss a possible solution to this problem below.

Multithreaded programs which use many threads, may suffer from high perfor-
mance overheads when implementing this countermeasure: the amount of memory
and virtual address space that would be needed to set up multiple stacks for each
thread may be prohibitively expensive.

Our approach is incompatible with most address space layout randomization
(ASLR) [170] implementations. This can be mitigated by finding the start of the
stack dynamically when the program is started, while setting up the extra stacks.
This can be done either by recursively following the saved frame pointer values
or by modifying the ASLR implementation to store the value in a known location
(e.g., the normal stack location) and subsequently clearing it when the multiple
stacks have been set up.

Because not all applications can afford to use five stacks, but would still like
more security than simply reducing the amount of stacks to two can offer, the
multistack countermeasure could be extended by a concept that we call selective
bounds checking. Selective bounds checking only bounds checks write operations
to some types of arrays to prevent them from being overflowed. If, for example,
we can bounds check write accesses to arrays of pointers, we could determine
that the risk of the array of pointers being used as an attack source is reduced
to a low enough level so that we can place it in the first category. While the
bounds checking for direct access is straightforward (the program is instrumented
to dynamically check if the index is within the bounds of the array), static analysis
is needed to determine how to instrument indirect accesses to an array. This means
that this bounds checker will not find all cases of such accesses, but since we are
only interested in reducing the risk of already unlikely attack sources (like arrays
of pointers). Because most programs do not operate heavily on these unlikely
sources, the performance overhead of adding this type of bounds checking may be
acceptable.

This selective bounds checker can be applied to reduce the number of stacks to
two, which could make it realistic to reserve a register as a stack pointer for the
second stack. This would allow us to place this second stack anywhere in memory,

74 Extended protection against stack smashing attacks without performance loss

which would solve the fixed stack size problem, the incompatibility with ASLR
and would eliminate the gaps. However, a performance overhead will probably be
incurred because this extra register must be modified in much the same way as
the original stack pointer.

One vulnerability that is present in existing countermeasures, that we did not
address in our countermeasure either is the fact that a structure can contain both a
pointer and an array of characters, giving the attacker the possibility to overwrite
this pointer using the array of characters. The same is true for memory allocated
with alloca (it can be used to store array of characters and pointers). This is an
important limitation that a lot of countermeasures suffer from.

A non-control data attack [39] that relies on modifying a character array would
still work, but is severely limited to only being able to overwrite character arrays.

Our approach also does not detect when a buffer overflow has occurred. How-
ever, it is possible to easily and efficiently add such detection as an extension to
our implementation by using the technique used by StackGuard and Propolice of
placing a random number on the stack and verifying it before returning from the
function. This canary would be placed on every stack and compared to the value
stored on the first stack before returning. Since the random number is mirrored, we
can also use a per function canary, rather than a global one, reducing the risk of an
attacker discovering one random number and using it to circumvent the detection
in another function. If an attacker does discover the value, the countermeasure will
no longer be able to perform detection, but it will not be circumvented, because
only the detection and not the security relies on it.

3.6 Related work12

Many countermeasures against code injection attacks exist. In this section, we
briefly describe the different approaches that can be applied for protection against
buffer overflows. The focus is on the countermeasures that are designed specifically
to protect the stack from stack-smashing attacks.

3.6.1 Protection from attacks on stack-based vulnerabilities

Because the stack-based buffer overflow is a very widespread vulnerability, many
countermeasures have been designed to protect against attacks on the stack. In
this section we discuss the countermeasures that are most closely related to our
countermeasure.

Two related countermeasures, StackGuard [49] and Propolice [62] were both
discussed in Section 3.2. They rely on random values that must remain secret to
provide protection.

12This section discusses work closely related to our countermeasure, a more extensive discussion
on the topic of countermeasures for code injection attacks can be found in section 2.4

3.6 Related work 75

Stack Shield [172] is a countermeasure that attempts to protect against stack
smashing attacks by copying the return address to another memory location, before
entering the function call and restoring it just before returning from the function.
This is an efficient countermeasure that protects the return address from attack,
but still allows an attacker to use indirect pointer overwriting [34] to bypass the
protection.

RAD [42] is similar to Stack Shield, except that it compares the return ad-
dresses stored at both locations and terminates the program if they are different.
It solves some compatibility problems of Stack Shied and also better protects the
area where the return addresses are copied to. However, it still only protect return
addresses and, thus, could be bypassed using indirect pointer overwriting.

Xu et al. [191] suggest a similar approach to Stack Shield. Their countermea-
sure splits the stack into a control and a data stack. The control stack stores the
return addresses while the data stack contains the rest of the data stored on the
stack. Their implementation copies the return address to the control stack before
entering the function call and copies it back from the control stack onto the data
stack before returning from the function. The authors provide performance results
for the SPEC CPU2000 benchmarks, the performance overheads associated with
this approach range from 0.01% for 181.mcf to 23.77% for 255.vortex, which cane
be prohibitively high for such a countermeasure.

Libverify [11] offers the same kind of protection as Stack Shield: upon entering a
function it saves the return address on a return address stack (that it calls a canary
stack) and when exiting from a function the saved return address is compared to
the actual return address. The main difference with Stack Shield lies in the way
that this check is added: Libverify does not require access to the source code of
the application: the checks are added by dynamically linking the process with the
library at run-time.

Libsafe [11] replaces the string manipulation functions that are prone to misuse
with functions that prevent a buffer from being overflowed outside its stackframe.
This is done by calculating the size of the input string and then making sure that
the size of the source string is less than the upper bound of the destination string
(the space from the variable’s stack location to the saved frame pointer). If it
is not smaller, the program is terminated. Once more, as is the case with sev-
eral other countermeasures, this protection can be bypassed using indirect pointer
overwriting.

Bhatkar et al. [20] incorporates a limited notion of our approach: it divides
the stack into a safe stack (that only contains registers, return addresses and other
values whose address is never taken) and a second stack for everything else.

3.6.2 Alternative approaches

Other approaches that protect against the more general problem of buffer overflows
also protect against stack-based buffer overflows. In this section, we give a brief

76 Extended protection against stack smashing attacks without performance loss

overview of the related work.

Compiler-based countermeasures

Bounds checking [8, 89, 94, 110, 124, 144, 193] is the good solution for buffer
overflows. However, performing bounds checking in C can have a severe impact
on performance or may cause existing object code to become incompatible with
bounds checked object code.

Protection of all pointers as provided by PointGuard [48] is an efficient imple-
mentation of a countermeasure that encrypts (using XOR) all pointers stored in
memory with a randomly generated key and decrypts the pointer before loading it
into a register. To protect the key, it is stored in a register upon generation and is
never stored in memory. However, attackers could guess the decryption key if they
are able to view several different encrypted pointers. Another attack described in
[4] describes how an attacker could bypass PointGuard by partially overwriting
a pointer. By only needing a partial overwrite, the randomness can be reduced,
making a brute force attack feasible (if only one byte needs to be overwritten, the
randomness is only 1 in 256,, instead of 1 in 232 for four bytes).

Operating system-based countermeasures

Non-executable memory [161, 170] tries to prevent code injection attacks by ensur-
ing that the operating system does not allow execution of code that is not stored
in the text segment of the program. This type of countermeasure can, however,
be bypassed by a return-into-libc attack [188] where an attacker executes existing
code (possibly with different parameters).

Randomized instruction sets [12, 93] also try to prevent an attacker from exe-
cuting injected code by encrypting instructions on a per process basis while they
are in memory and decrypting them when they are needed for execution. However,
software-based implementations of this countermeasure incur large performance
costs, while a hardware implementation is not immediately practical. Determined
attackers may also be able to guess the encryption key and, as such, be able to
inject code [163].

Address randomization [18, 170] is a technique that attempts to provide se-
curity by modifying the locations of objects in memory for different runs of a
program. However, the randomization is limited in 32-bit systems (usually to 16
bits for the heap) and as a result may be inadequate for a determined attacker
[151].

Execution monitoring

In this section we describe two countermeasures that monitor the execution of a
program and prevent control-flow transfers that could be unsafe.

3.7 Conclusion 77

Program shepherding [96] is a technique that monitors the execution of a pro-
gram and disallows control-flow transfers13 that are not considered safe. Program
shepherding can be used for example to ensure that programs can only jump to
entry points of functions or libraries, denying an attacker the possibility of bypass-
ing checks that might be performed before a certain action is taken in a function.
Program shepherding can also be used to enforce return instructions to only return
to the instruction after the call site. The proposed implementation of this counter-
measure is done using a runtime binary interpreter which results in a performance
impact that is significant for some programs, but acceptable for others.

Control-flow integrity [1] determines a program’s control flow graph beforehand
and ensures that the program adheres to it. It does so by assigning a unique ID to
each possible control flow destination of a control flow transfer. Before transferring
control flow to such a destination, the ID of the destination is compared to the
expected ID, and if they are equal, the program proceeds as normal. Performance
overhead may be acceptable for some applications, but may be prohibitive for
others.

3.7 Conclusion

In this document we described a countermeasure that protects against stack-based
buffer overflows that has negligible performance overhead, while solving some of
the shortcomings of existing efficient countermeasures. We assign all the different
data types stored on the stack a high, medium or low ranking, both for the risk
of it being an attack source and the value it has as a possible target. Using these
rankings, we assign the data on the stack to different categories. Each of these
categories is then mapped onto a separate stack. This effectively separates high-
value targets from data that has a high risk of being used to launch an attack. A
straight mapping of categories results in an implementation that has a very low
performance overhead and offers better protection than existing countermeasures
of comparable efficiency because it does not rely on random numbers. However, the
memory usage in our implementation is higher than most other countermeasures,
and we discuss possible ways to reduce it. One of the important advantages of
our approach over existing approaches, is that it does not rely on the secrecy of
canaries. Our countermeasure remains secure even if an attacker is able to read
arbitrary memory locations because it is not based on random numbers.

13Such a control flow transfer occurs when e.g., a call or ret instruction is executed.

78 Extended protection against stack smashing attacks without performance loss

Chapter 4

Improving memory
management security for C
and C++

In this chapter, a paper is presented that improves the resilience of
memory allocators against heap-based buffer overflow attacks. Often
an attacker overwrites the management information that the memory
manager stores with the dynamically allocated memory. By separating
the management information from the regular data stored in this dy-
namic memory, it becomes harder for an attacker to perform a code
injection attack when exploiting a heap-based buffer overflow. This
countermeasure is very efficient and like the stack-based countermea-
sure, does not rely on secret random numbers to provide protection. As
such, it is resilient against attackers who are able to read the address
space of the program. This countermeasure was also a direct result of
the more methodological approach discussed in [199], it is an applica-
tion of the idea of separating control-flow data (data that is used to
regulate the control flow of the program, like a return address) from
regular data.

This paper is an extended version of work described in [200] that was
presented in December 2006 at the Eighth International Conference on
Information and Communication Security. It was written in collabo-
ration with Wouter Joosen, Frank Piessens and Hans Vanden Eynden
and was submitted to the Journal Of Computer Security for review in
January 2007. A revised version was submitted in March 2008.

79

80 Improving memory management security for C and C++

4.1 Introduction 81

Abstract

Memory managers are an important part of any modern language: they are used
to dynamically allocate memory for use in the program. Many managers exist
and depending on the operating system and language. However, two major types
of managers can be identified: manual memory allocators and garbage collectors.
In the case of manual memory allocators, the programmer must manually release
memory back to the system when it is no longer needed. Problems can occur when
a programmer forgets to release it (memory leaks), releases it twice or keeps using
freed memory. These problems are solved in garbage collectors. However, both
manual memory allocators and garbage collectors store management information
for the memory they manage. Often, this management information is stored where
a buffer overflow could allow an attacker to overwrite this information, providing
a reliable way to achieve code execution when exploiting these vulnerabilities. In
this paper we describe several vulnerabilities for C and C++ and how these could
be exploited by modifying the management information of a representative manual
memory allocator and a garbage collector.

Afterwards, we present an approach that, when applied to memory managers,
will protect against these attack vectors. We implemented our approach by mod-
ifying an existing widely used memory allocator. Benchmarks show that this im-
plementation has a negligible, sometimes even beneficial, impact on performance.

4.1 Introduction

Security has become an important concern for all computer users. Worms and
hackers are a part of every day Internet life. A particularly dangerous attack is
the code injection attack, where attackers are able to insert code into the pro-
gram’s address space and can subsequently execute it. Programs written in C
are particularly vulnerable to such attacks. Attackers can use a range of vulner-
abilities to inject code. The most well known and most exploited is of course
the standard buffer overflow: attackers write past the boundaries of a stack-based
buffer and overwrite the return address of a function and point it to their injected
code. When the function subsequently returns, the code injected by the attackers
is executed [3].

These are not the only kind of code injection attacks though: a buffer overflow
can also exist on the heap, allowing an attacker to overwrite heap-stored data. As
pointers are not always available in normal heap-allocated memory, attackers often
overwrite the management information that the memory manager relies upon to
function correctly. A double free vulnerability, where a particular part of heap-
allocated memory is deallocated twice could also be used by an attacker to inject
code.

Many countermeasures have been devised that try to prevent code injection

82 Improving memory management security for C and C++

attacks [198]. However most have focused on preventing stack-based buffer over-
flows and only few have concentrated on protecting the heap or memory allocators
from attack.

In this paper we evaluate a commonly used memory allocator and a garbage
collector for C and C++ with respect to their resilience against code injection
attacks and present a significant improvement for memory managers in order to
increase robustness against code injection attacks. Our prototype implementation
(which we call dnmalloc) comes at a very modest cost in both performance and
memory usage overhead.

This paper is an extended version of work described in [200] which was pre-
sented in December 2006 at the Eighth International Conference on Information
and Communication Security. The paper is structured as follows: Section 4.2
explains which vulnerabilities can exist for heap-allocated memory. Section 4.3
describes how both a popular memory allocator and a garbage collector can be
exploited by an attacker using one of the vulnerabilities of Section 4.2 to perform
code injection attacks. Section 4.4 describes our new more robust approach to
handling the management information associated with chunks of memory. Section
4.5 contains the results of tests in which we compare our memory allocator to the
original allocator in terms of performance overhead and memory usage. In Section
4.6 related work in improving security for memory allocators is discussed. Finally,
Section 4.7 discusses possible future enhancements and presents our conclusion.

4.2 Heap-based vulnerabilities for code injection
attacks1

There are a number of vulnerabilities that occur frequently and as such have
become a favorite for attackers to use to perform code injection. We will examine
how different memory allocators might be misused by using one of three common
vulnerabilities: ”heap-based buffer overflows”, ”off by one errors” and ”dangling
pointer references”. In this section we will describe what these vulnerabilities are
and how they could lead to a code injection attack.

4.2.1 Heap-based buffer overflow

Heap memory is dynamically allocated at run-time by the application. Buffer
overflow, which are usually exploited on the stack, are also possible in this kind of
memory. Exploitation of such heap-based buffer overflows usually relies on finding
either function pointers or by performing an indirect pointer attack [34] on data
pointers in this memory area. However, these pointers are not always present in the

1This section discusses the problem of heap-based buffer overflows, a more extensive discussion
on the topic of vulnerabilities can be found in section 2.2

4.2 Heap-based vulnerabilities for code injection attacks 83

data stored by the program in this memory. As such, most attackers overwrite the
memory management information that the memory allocator stores in or around
memory chunks it manages. By modifying this information, attackers can perform
an indirect pointer overwrite. This allows attackers to overwrite arbitrary memory
locations, which could lead to a code injection attack [5, 195]. In the following
sections we will describe how an attacker could use specific memory managers to
perform this kind of attack.

4.2.2 Off by one errors

An off by one error is a special case of the buffer overflow. When an off by one
occurs, the adjacent memory location is overwritten by exactly one byte. This
often happens when a programmer loops through an array but typically ends at
the array’s size rather than stopping at the preceding element (because arrays start
at 0). In some cases these errors can also be exploitable by an attacker [5, 195].
A more generally exploitable version of the off by one for memory allocators is
an off by five, while these do not occur as often in the wild, they demonstrate
that it is possible to cause a code injection attack when little memory is available.
These errors are usually only exploitable on little endian machines because the
least significant byte of an integer is stored before the most significant byte in
memory.

4.2.3 Dangling pointer references

Dangling pointers are pointers to memory locations that are no longer allocated. In
most cases dereferencing a dangling pointer will lead to a program crash. However
in heap memory, it could also lead to a double free vulnerability, where a memory
location is freed twice. Such a double free vulnerability could be misused by
an attacker to modify the management information associated with a memory
chunk and as a result could lead to a code injection attack [56]. This kind of
vulnerability is not present in all memory managers, as some check whether a
chunk is free or not before freeing it a second time. It may also be possible to
write to memory which has already been reused, while the program think it is
still writing to the original object. This can also lead to vulnerabilities. However,
when such a vulnerability occurs, it is not always possible to reliably exploit these
vulnerabilities as exploitation will most likely rely on the way the program uses the
memory rather than by using the memory manager to the attacker’s advantage.

In the following sections we will describe how a specific memory allocator could
be exploited using dangling pointer references and more specifically, double free
vulnerabilities. More information about these attacks can be found in [56, 195,
203].

84 Improving memory management security for C and C++

4.3 Memory managers

In this section we will examine a representative memory allocator and a garbage
collector for C and C++. We have chosen Doug Lea’s memory allocator on which
the Linux memory allocator is based, because this allocator is in wide use and
illustrates typical vulnerabilities that are encountered in other memory allocators.
A discussion of how other memory allocators can be exploited by attackers can
be found in [203]. Boehm’s garbage collector was chosen to determine whether
a representative garbage collecting memory manager for C/C++ would be more
resilient against attack.

We will describe how these memory managers work in normal circumstances
and then will explain how a heap-vulnerability that can overwrite the management
information of these memory managers could be used by an attacker to cause a
code injection attack. We will use the same structure to describe both memory
managers: first we describe how the manager works and afterwards we examine
how an attacker could exploit it to perform code injection attacks (given one of
the aforementioned vulnerabilities exists).

4.3.1 Doug Lea’s memory allocator2

Doug Lea’s memory allocator [107, 108] (commonly referred to as dlmalloc) was
designed as a general-purpose memory allocator that can be used by any kind of
program. Dlmalloc is used as the basis for ptmalloc [71], which is the allocator
used in the GNU/Linux operating system. Ptmalloc mainly differs from dlmalloc
in that it offers better support for multithreading, however this has no direct
impact on the way an attacker can abuse the memory allocator’s management
information to perform code injection attacks. The description of dlmalloc in this
section is based on version 2.7.2.

Description

The memory allocator divides the heap memory at its disposal into contiguous
chunks3, which vary in size as the various allocation routines (malloc, free, realloc,
. . .) are called. An invariant is that a free chunk never borders another free chunk
when one of these routines has completed: if two free chunks had bordered, they
would have been coalesced into one larger free chunk. These free chunks are kept
in a doubly linked list, sorted by size. When the memory allocator at a later time
requests a chunk of the same size as one of these free chunks, the first chunk of

2This section discusses Doug Lea’s memory allocator and how heap-based vulnerabilities can
be abused by attackers to perform code injection attacks when using this allocator, a more
extensive discussion on the topic of vulnerabilities can be found in section 2.2

3A chunk is a block of memory that is allocated by the allocator, it can be larger than what
a programmer requested because it usually reserves space for management information.

4.3 Memory managers 85

Size of prev. chunk
Size of chunk1

User data

Size of chunk1
Size of chunk3

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk4

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Old user data

Forward pointer
Backward pointer

Lower addresses

Higher addresses

chunk3

chunk1 chunk4

chunk2

M P

M P

M P

M P

Figure 4.1: Heap containing used and free chunks

appropriate size will be removed from the list and made available for use in the
program (i.e. it will turn into an allocated chunk).

Chunk structure Memory management information associated with a chunk is
stored in-band. Figure 4.1 illustrates what a heap of used and unused chunks could
look like. Chunk1 is an allocated chunk containing information about the size of
the chunk stored before it and its own size4. The rest of the chunk is available for
the program to write data in. Chunk3 is a free chunk that is allocated adjacent
to chunk1. Chunk2 and chunk4 are free chunks located in arbitrary locations on
the heap.

Chunk3 is located in a doubly linked list together with chunk2 and chunk4.
Chunk2 is the first chunk in the chain: its forward pointer points to chunk3 and
its backward pointer points to a previous chunk in the list. Chunk3 ’s forward
pointer points to chunk4 and its backward pointer points to chunk2. Chunk4 is
the last chunk in our example: its forward pointer points to a next chunk in the
list and its backward pointer points to chunk3.

4The size of allocated chunks is always a multiple of eight, so the three least significant bits of
the size field are used for management information: a bit to indicate if the previous chunk is in
use (P) or not and one to indicate if the memory is mapped or not (M). The third bit is currently
unused. The ”previous chunk in use”-bit can be modified by an attacker to force coalescing of
chunks. How this coalescing can be abused is explained later.

86 Improving memory management security for C and C++

Size of prev. chunk
Size of chunk1
Code to jump over

dummy

Size of chunk1
Size of chunk3

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk4

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Old user data

Forward pointer
Backward pointer

Injected Code

Dummy

Return address f0
Saved frame ptr f0

Local variable f0
Local variable f0

Lower addresses

Higher addresses

chunk4

chunk2

chunk1

chunk3

Stack

M P

M P

M P

M P

Figure 4.2: Heap-based buffer overflow in dlmalloc

Exploitation

Dlmalloc is vulnerable to all three of the previously described vulnerabilities [5,
91, 162, 56]. Here we will describe how these vulnerabilities may lead to a code
injection attack.

Overwriting memory management information Figure 4.2 shows what
could happen if an array that is located in chunk1 is overflowed: an attacker
has overwritten the management information of chunk3. The size fields are left
unchanged (although these could be modified if needed). The forward pointer has
been changed to point to 12 bytes before the return address and the backward
pointer has been changed to point to code that will jump over the next few bytes.
When chunk1 is subsequently freed, it will be coalesced together with chunk3 into
a larger chunk. As chunk3 will no longer be a separate chunk after the coalescing
it must first be removed from the list of free chunks.

The unlink macro takes care of this: internally a free chunk is represented
by a struct containing the following unsigned long integer fields (in this order):
prev size, size, forward and back. A chunk is unlinked as follows:

Listing 4.1: Unlink macro
chunk2−>forward−>back = chunk2−>back
chunk2−>back−>forward = chunk2−>forward

4.3 Memory managers 87

Which is the same as (based on the struct used to represent malloc chunks):

Listing 4.2: Unlink macro expanded
∗(chunk2−>forward +12) = chunk2−>back
∗(chunk2−>back+8) = chunk2−>forward

As a result, the value of the memory location that is twelve bytes after the
location that forward points to will be overwritten with the value of back, and the
value of the memory location eight bytes after the location that back points to
will be overwritten with the value of forward. So in the example in Figure 4.2,
the return address would be overwritten with a pointer to injected code. However,
since the eight bytes after the memory that back points to will be overwritten
with a pointer to forward (illustrated as dummy in Figure 4.2), the attacker needs
to insert code to jump over the first twelve bytes into the first eight bytes of his
injected code. Using this technique an attacker could overwrite arbitrary memory
locations [5, 91, 162].

Off by one error An off by one error could also be exploited in the Doug Lea’s
memory allocator [5]. If the chunk is located immediately next to the next chunk
(i.e., not padded to be a multiple of eight), then an off by one can be exploited: if
the chunk is in use, the prev size field of the next chunk will be used for data and
by writing a single byte out of the bounds of the chunk, the least significant byte
of the size field of the next chunk will be overwritten. As the least significant byte
contains the prev inuse bit, the attacker can make the allocator think the chunk
is free and will coalesce it when the second chunk is freed. Figure 4.3 depicts the
exploit: the attacker creates a fake chunk in the chunk1 and sets the prev size field
accordingly and overwrites the least significant byte of chunk2 ’s size field to mark
the current chunk as free. The same technique using the forward and backward
pointers (in the fake chunk) that was used in Section 4.3.1 can now be used to
overwrite arbitrary memory locations.

Double free Dlmalloc can be used for a code injection attack if a double free
exists in the program [56]. Figure 4.4 illustrates what happens when a double free
occurs. The full lines in this figure are an example of what the list of free chunks
of memory might look like when using this allocator.

Chunk1 is larger than chunk2 and chunk3 (which are both the same size),
meaning that chunk2 is the first chunk in the list of free chunks of equal size.
When a new chunk of the same size as chunk2 is freed, it is placed at the beginning
of this list of chunks of the same size by modifying the backward pointer of chunk1
and the forward pointer of chunk2.

When a chunk is freed twice it overwrites the forward and backward pointers
and could allow an attacker to overwrite arbitrary memory locations at some later

88 Improving memory management security for C and C++

Size of prev. chunk
Size of chunk1

User data

Size of chunk1
Size of chunk2

Old user data

Forward pointer
Backward pointer

Fake chunk

Lower addresses

Higher addresses

chunk1

chunk2

M P

M P

Figure 4.3: Off by one error in dlmalloc

Lower addresses

Higher addresses

chunk1
Size of prev. chunk

Size of chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Old user data

Forward pointer
Backward pointer

chunk2 chunk3

Figure 4.4: List of free chunks in dlmalloc: full lines show a normal list of chunks,
dotted lines show the changes after a double free has occurred.

4.3 Memory managers 89

point in the program. As mentioned in the previous section: if a new chunk of
the same size as chunk2 is freed it will be placed before chunk2 in the list. The
following pseudo code demonstrates this (modified from the original version found
in dlmalloc):

Listing 4.3: Adding a chunk to the list of free chunks
tmpback = f r o n t o f l i s t o f s a m e s i z e c h u n k s
tmpforward = tmpback−>forward
new chunk−>back = tmpback
new chunk−>forward = tmpforward
tmpforward−>back = tmpback−>forward = new chunk

The backward pointer of new chunk is set to point to chunk2, the forward
pointer of this backward pointer (i.e., chunk2−>forward = chunk1) will be set as
the forward pointer for new chunk. The backward pointer of the forward pointer
(i.e., chunk1−>back) will be set to new chunk and the forward pointer of the
backward pointer (chunk2−>forward) will be set to new chunk.

If chunk2 would be freed twice in succession, the following would happen (sub-
stitutions made on the code listed above):

Listing 4.4: Freeing chunk2 twice
back = chunk2
forward = chunk2−>forward
chunk2−>back = chunk2
chunk2−>forward = chunk2−>forward
chunk2−>forward−>back = chunk2−>forward = chunk2

The forward and backward pointers of chunk2 both point to itself. The dotted
lines in Figure 4.4 illustrate what the list of free chunks looks like after a second
free of chunk2.

Listing 4.5: Unlinking chunk2
chunk2−>forward−>back = chunk2−>back
chunk2−>back−>forward = chunk2−>forward

But since both chunk2−>forward and chunk2−>back point to chunk2, it will
again point to itself and will not really be unlinked. However the allocator assumes
it has and the program is now free to use the user data part (everything below
‘size of chunk’ in Figure 4.4) of the chunk for its own use.

90 Improving memory management security for C and C++

Attackers can now use the same technique that we previously discussed to
exploit the heap-based overflow (see Figure 4.2): they set the forward pointer to
point 12 bytes before the return address and change the value of the backward
pointer to point to code that will jump over the bytes that will be overwritten.
When the program tries to allocate a chunk of the same size again, it will again
try to unlink chunk2, which will overwrite the return address with the value of
chunk2’s backward pointer.

4.3.2 Boehm garbage collector

The Boehm garbage collector [29, 28, 27] is a conservative garbage collector 5 for
C and C++ that can be used instead of malloc or new. Programmers can request
memory without having to explicitly free it when they no longer need it. The
garbage collector will automatically release memory to the system when it is no
longer needed. If the programmer does not interfere with memory that is managed
by the garbage collector (explicit deallocation is still possible), dangling pointer
references are made impossible.

Description

Memory is allocated by the programmer by a call to GC malloc with a request for
a number of bytes to allocate. The programmer can also explicitly free memory
using GC free or can resize the chunk by using GC realloc. These two calls could
however lead to dangling pointer references.

Memory structure The collector makes a difference between large and small
chunks. Large chunks are larger than half of the value of HBLKSIZE6. These large
chunks are rounded up to the next multiple of HBLKSIZE and allocated. When a
small chunk is requested and none are free, the allocator will request HBLKSIZE
memory from the system and divide it in small chunks of the requested size.

There is no special structure for an allocated chunk, it only contains data. A
free chunk contains a pointer at the beginning of the chunk that points to the next
free chunk to form a linked list of free chunks of a particular size.

Collection modes The garbage collector has two modes: incremental and non-
incremental modes. In incremental mode, the heap will be increased in size when-
ever insufficient space is available to fulfill an allocation request. Garbage collection
only starts when a certain threshold of heap size is reached. In non-incremental
mode whenever a memory allocation would fail without resizing the heap the

5A conservative collector assumes that each memory location is a pointer to another object if
it contains a value that goes into an allocated chunk of memory. This can result in false negatives
where some memory is incorrectly identified as still being allocated.

6HBLKSIZE is equal to page size on IA32.

4.3 Memory managers 91

garbage collector decides (based on a threshold value) whether or not to start
collecting.

Collection Collection is done using a mark and sweep algorithm. This algorithm
works in three steps. First all objects are marked as being unreachable (i.e.,
candidates to be freed). The allocator then starts at the roots (registers, stack,
static data) and iterates over every pointer that is reachable starting from one of
these objects. When an object is reachable it is marked accordingly. Afterwards
the removal phase starts: large unreachable chunks are placed in a linked list
and large adjacent chunks are coalesced. Pages containing small chunks are also
examined: if all of the chunks on the page are unreachable, the entire page is
placed in the list of large chunks. If it is not free, the small chunks are placed in
a linked list of small chunks of the same size.

Exploitation

Although the garbage collector removes vulnerabilities like dangling pointer ref-
erences, it is still vulnerable to buffer overflows. It is also vulnerable to a double
free vulnerability if the programmer explicitly frees memory.

Overwriting memory management information During the removal phase,
objects are placed in a linked list of free chunks of the same size that is stored at
the start of the chunk. If attackers can write out of the boundaries of a chunk,
they can overwrite the pointer to the next chunk in the linked list and make it
refer to the target memory location. When the allocator tries to reallocate a chunk
of the same size it will return the memory location as a chunk and as a result will
allow the attacker to overwrite the target memory location.

Off by five The garbage collector will automatically add padding to an object
to ensure that the property of C/C++ which allows a pointer to point to one
element past an array is recognized as pointing to the object rather than the next.
This padding forces an attacker to overwrite the padding (4 bytes on IA32). He
can then overwrite the first four bytes of the next chunk with an off by eight
attack. If the target memory location is located close to a chunk and only the
least significant byte of the pointer needs to be modified then an off by five might
suffice.

Double free Dangling pointer references cannot exist if the programmer does
not interfere with the garbage collector. However if the programmer explicitly
frees memory, a double free can occur and could be exploitable.

Figures 4.5 and 4.6 illustrate how this vulnerability can be exploited: chunk1
was the last chunk freed and was added to the start of the linked list and points to

92 Improving memory management security for C and C++

chunk2. If chunk2 is freed a second time it will be placed at the beginning of the
list, but chunk1 will still point to it. When chunk2 is subsequently reallocated, it
will be writable and still be located in the list of free chunks. The location where
the pointer resides is now writable by the program. If attackers control what is
written to the chunk, they can modify the pointer and if more chunks of the same
size are allocated eventually the chunk to which chunk2 points will be returned as
a valid chunk, allowing the attackers to overwrite arbitrary memory locations.

Next
chunk1

Old user
data

Next
chunk2

Old user
data

Figure 4.5: Linked list of free chunks in
Boehm’s garbage collector

Next
chunk2

Old user
data

Next
chunk1

Old user
data

Figure 4.6: Double free of chunk2 in
Boehm’s garbage collector

4.3.3 Summary

The memory allocator we presented in this section is representative for the many
memory allocators that are in common use today. There are many others like the
memory allocator used by Windows, the allocator used in the Solaris and IRIX
operating systems or the allocator used in FreeBSD that are also vulnerable to
similar attacks [99, 5, 13].

In the previous section we also discussed how a garbage collector can be vul-
nerable to the same attacks that are often performed on memory allocators.

4.4 A more secure memory allocator

As can be noted from the previous sections many memory managers are vulnerable
to code injection attacks if an attacker can modify its management information.
In this section we describe a new approach to handling the management informa-
tion that is more robust against these kind of attacks. This new approach could
be applied to the managers discussed above and we also describe a prototype
implementation (called dnmalloc) where we modified dlmalloc to incorporate the
changes we described.

4.4 A more secure memory allocator 93

4.4.1 Countermeasure Design

The main principle used to design this countermeasure is to separate management
information (chunkinfo) from the data stored by the user (chunkdata). This man-
agement information is then stored in separate contiguous memory regions that
only contain other management information. To protect these regions from be-
ing overwritten by overflows in other memory mapped areas, they are protected
by guard pages. This simple design essentially makes overwriting the chunkinfo
by using a heap-based buffer overflow impossible. Figure 4.7 depicts the typical
memory layout of a program that uses a general memory allocator (on the left)
and one that uses our modified design (on the right)

Most memory allocators allocate memory in the datasegment that can be in-
creased (or decreased) as necessary using the brk systemcall [166]. However, when
larger chunks are requested, it can also allocate memory in the shared memory
area 7 using the mmap8 systemcall to allocate memory for the chunk. In Figure
4.7, we have depicted this behavior: there are chunks allocated in both the heap
and in the shared memory area. Note that a program can also map files and de-
vices into this region itself, we have depicted this in Figure 4.7 in the boxes labeled
‘Program mapped memory’.

In this section we describe the structures needed to perform this separation in a
memory allocator efficiently. In the next paragraph we describe the structures that
are used to retrieve the chunkinfo when presented with a pointer to chunkdata.
In the paragraph that follows the next, we discuss the management of the region
where these chunkinfos are stored.

Lookup table and lookup function

To perform the separation of the management information from the actual chunk-
data, we use a lookup table. The entries in the lookup table contain pointers to
the chunkinfo for a particular chunkdata. When given such a chunkdata address,
a lookup function is used to find the correct entry in the lookup table.

The table is stored in a map of contiguous memory that is big enough to hold
the maximum size of the lookup table. This map can be large on 32-bit systems,
however it will only use virtual address space rather than physical memory9. Phys-
ical memory will only be allocated by the operating system when the specific page
is written to. To protect this memory from buffer overflows in other memory in
the shared memory region, a guard page is placed before it. At the right hand

7Note that memory in this area is not necessarily shared among applications, it has been
allocated by using mmap

8mmap is used to map files or devices into memory. However, when passing it the MAP ANON
flag or mapping the /dev/zero file, it can be used to allocate a specific region of contiguous
memory for use by the application (however, the granularity is restricted to page size) [166].

9While this will not cause physical memory overhead, the use of a large amount of virtual
address space will use up more page table entries, resulting in performance overhead.

94 Improving memory management security for C and C++

Chunkinfo
region

Lookuptable

Stack

b
r
k

H
e
a
p

Guard page

Mapped
Chunk

Shared
libraries

Guard page

Text

Data

BSS

Heap

Shared
memory

Program
mapped
memory

Chunkdatab
r
k

H
e
a
p

Mapped
Chunk

s
h
a
r
e
d

m
e
m
o
r
y

Shared
libraries

Program
mapped
memory

Mapped
Chunk

Chunkinfo

Guard page

Program
mapped
memory

Chunkinfo
region

Chunkinfo

Chunkdata
Chunkdata

Chunkdata

s
h
a
r
e
d

m
e
m
o
r
y

Figure 4.7: Original (left) and modified (right) process memory layout

4.4 A more secure memory allocator 95

side of Figure 4.7 we illustrate what the layout looks like in a typical program that
uses this design.

Chunkinfo regions

Chunkinfos are also stored in a particular contiguous region of memory (called a
chunkinfo region), which is protected from other memory by a guard page. This
region also needs to be managed, several options are available for doing this. We
will discuss the advantages and disadvantages of each.

Our preferred design, which is also the one used in our implementation and
the one depicted in Figure 4.7, is to map a region of memory large enough to hold
a predetermined amount of chunkinfos. To protect its contents, we place a guard
page at the top of the region. When the region is full, a new region, with its own
guard page, is mapped and added to a linked list of chunkinfo regions. This region
then becomes the active region, meaning that all requests for new chunkinfos that
cannot be satisfied by existing chunkinfos, will be allocated in this region. The
disadvantage of this technique is that a separate guard page is needed for every
chunkinfo region, because the allocator or program may have stored data in the
same region (as depicted in Figure 4.7). Although such a guard page does not
need actual memory (it will only use virtual address space), setting the correct
permissions for it is an expensive system call (requiring the system to perform
several time-consuming actions to execute).

When a chunkdata disappears, either because the associated memory is released
back to the system or because two chunkdatas are coalesced into one, the chunkinfo
is stored in a linked list of free chunkinfos. In this design, we have a separate list
of free chunkinfos for every region. This list is contained in one of the fields of
the chunkinfo that is unused because it is no longer associated with a chunkdata.
When a new chunkinfo is needed, the allocator returns one of these free chunkinfos:
it goes over the lists of free chunkinfos of all existing chunkinfo regions (starting
at the currently active region) to attempt to find one. If none can be found, it
allocates a new chunkinfo from the active region. If all chunkinfos for a region
have been added to its list of free chunkinfos, the entire region is released back to
the system.

An alternative design is to map a single chunkinfo region into memory large
enough to hold a specific amount of chunkinfos. When the map is full, it can be
extended as needed. The advantage is that there is one large region, and as such,
not much management is required on the region, except growing and shrinking
it as needed. This also means that we only need a single guard page at the
top of the region to protect the entire region. However, a major disadvantage of
this technique is that, if the virtual address space behind the region is not free,
extension means moving it somewhere else in the address space. While the move
operation is not expensive because of the paging system used in modern operating
systems, it invalidates the pointers in the lookup table. Going over the entire lookup

96 Improving memory management security for C and C++

table and modifying the pointers is prohibitively expensive. A possible solution to
this is to store offsets in the lookup table and to calculate the actual address of the
chunkinfo based on the base address of the chunkinfo region.

A third design is to store the chunkinfo region directly below the maximum
size the stack can grow to (if the stack has such a fixed maximum size), and make
the chunkinfo region grow down toward the heap. This eliminates the problem of
invalidation as well, and does not require extra calculations to find a chunkinfo,
given an entry in the lookup table. To protect this region from being overwritten
by data stored on the heap, a guard page has to be placed at the top of the region,
and has to be moved every time the region is extended. A major disadvantage of
this technique is that it can be hard to determine the start of the stack region on
systems that use address space layout randomization [170]. It is also incompatible
with programs that do not have a fixed maximum stack size.

These last two designs only need a single, but sorted, list of free chunkinfos.
When a new chunkinfo is needed, it can return, respectively, the lowest or highest
address from this list. When the free list reaches a predetermined size, the region
can be shrunk and the active chunkinfos in the shrunk area are copied to free
space in the remaining chunkinfo region.

4.4.2 Prototype Implementation

Dnmalloc was implemented by modifying dlmalloc 2.7.2 to incorporate the changes
described in Section 4.4.1. The ideas used to build this implementation, however,
could also be applied to other memory allocators. Dlmalloc was chosen because it
is very widely used (in its ptmalloc incarnation) and is representative for this type
of memory allocators. Dlmalloc was chosen over ptmalloc because it is less complex
to modify and because the modifications done to dlmalloc to achieve ptmalloc do
not have a direct impact on the way the memory allocator can be abused by an
attacker.

Lookup table and lookup function

The lookup table is in fact a lightweight hashtable: to implement it, we divide
every page in 256 possible chunks of 16 bytes (the minimum chunk size), which is
the maximum amount of chunks that can be stored on a single page in the heap.
These 256 possible chunks are then further divided into 32 groups of 8 elements.
For every such group we have 1 entry in the lookup table that contains a pointer to a
linked list of these elements (which has a maximum size of 8 elements). As a result
we have a maximum of 32 entries for every page. The lookup table is allocated
using the memory mapping function, mmap. This allows us to reserve virtual
address space for the maximum size that the lookup table can become without
using physical memory. Whenever a new page in the lookup table is accessed, the
operating system will allocate physical memory for it.

4.4 A more secure memory allocator 97

Ptr. to chunkinfo
Lookuptable

Ptr. to chunkinfo

Ptr. to chunkinfo
...

Ptr. to chunkinfo

hash_next
Chunkinfo

size
prev_size

fd
bk

chunkdata

hash_next
Chunkinfo

size
prev_size

fd
bk

chunkdata

User data

Chunkinfo region

Chunkdata

User data

Chunkdata
Heap

Free chunkinfo
next-free

Chunkinfo region info
position

next_region
freelist

freecounter

Figure 4.8: Lookup table and chunkinfo layout

We find an entry in the table for a particular group from a chunkdata’s address
in two steps:

1. We subtract the address of the start of the heap from the chunkdata’s ad-
dress.

2. Then we shift the resulting value 7 bits to the right. This will give us the
entry of the chunk’s group in the lookup table.

To find the chunkinfo associated with a chunk we now have to go over a linked
list that contains a maximum of 8 entries and compare the chunkdata’s address
with the pointer to the chunkdata that is stored in the chunkinfo. This linked list
is stored in the hashnext field of the chunkinfo (illustrated in Figure 4.8).

Chunkinfo

A chunkinfo contains all the information that is available in dlmalloc, and adds
several extra fields to correctly maintain the state. The layout of a chunkinfo is
illustrated in Figure 4.8: the prev size, size, forward and backward pointers serve
the same purpose as they do in dlmalloc, the hashnext field contains the linked
list that we mentioned in the previous section and the chunkdata field contains a
pointer to the actual allocated memory.

98 Improving memory management security for C and C++

4.4.3 Managing chunk information

The chunk information itself is stored in a fixed map that is big enough to hold
a predetermined amount of chunkinfos. Before this area a guard page is mapped,
to prevent the heap from overflowing into this memory region. Whenever a new
chunkinfo is needed, we simply allocate the next 24 bytes in the map for the
chunkinfo. When we run out of space, a new region is mapped together with a
guard page.

One chunkinfo in the region is used to store the meta-data associated with
a region. This metadata (illustrated in Figure 4.8, by the chunkinfo region info
structure) contains a pointer to the start of the list of free chunks in the freelist
field. It also holds a counter to determine the current amount of free chunkinfos
in the region. When this number reaches the maximum amount of chunks that
can be allocated in the region, it will be deallocated. The chunkinfo region info
structure also contains a position field that determines where in the region to
allocate the next chunkinfo. Finally, the next region field contains a pointer to the
next chunkinfo region.

4.5 Evaluation

The realization of these extra modifications comes at a cost: both in terms of per-
formance and in terms of memory overhead. To evaluate how high the performance
overhead of dnmalloc is compared to the original dlmalloc, we ran the full SPEC R©
CPU2000 Integer reportable benchmark [79], which gives us an idea of the overhead
associated with general-purpose single-threaded programs. We also evaluated the
implementation using a suite of allocator-intensive benchmarks, which have been
widely used to evaluate the performance of memory managers [75, 88, 16, 17].
While these two suites of benchmarks make up the macrobenchmarks of this sec-
tion, we also performed microbenchmarks to get a better understanding of which
allocator functions are faster or slower when using dnmalloc.

Table 4.1 holds a description of the programs that were used in both the macro-
and the microbenchmarks. For all the benchmarked applications we have also in-
cluded the number of times they call the most important memory allocation func-
tions: malloc, realloc, calloc10 and free (the SPEC R© benchmark calls programs
multiple times with different inputs for a single run; for these we have taken the
average number of calls).

The results of the performance evaluation can be found in Section 4.5.1. Both
macrobenchmarks and the microbenchmarks were also used to measure the mem-
ory overhead of our prototype implementation compared to dlmalloc. In Section
4.5.2 we discuss these results. Finally, we also performed an evaluation of the se-

10This memory allocator call will allocate memory and will then clear it by ensuring that all
memory is set to 0

4.5 Evaluation 99

SPEC CPU2000 Integer benchmark programs
Program Description malloc realloc calloc free
164.gzip Compression

utility
87,241 0 0 87,237

175.vpr FPGA place-
ment routing

53,774 9 48 51,711

176.gcc C compiler 22,056 2 0 18,799
181.mcf Network flow

solver
2 0 3 5

186.crafty Chess pro-
gram

39 0 0 2

197.parser Natural
language
processing

147 0 0 145

252.eon Ray tracing 1,753 0 0 1,373
253.perlbmk Perl 4,412,493 195,074 0 4,317,092
254.gap Computational

group theory
66 0 1 66

255.vortex Object
Oriented
Database

6 0 1,540,780 1,467,029

256.bzip2 Compression
utility

12 0 0 2

300.twolf Place/route
simulator

561,505 4 13,062 492,727

Allocator-intensive benchmarks
Program Description malloc realloc calloc free
boxed-sim Balls-in-box

simulator
3,328,299 63 0 3,312,113

cfrac Factors num-
bers

581,336,282 0 0 581,336,281

espresso Optimizer for
PLAs

5,084,290 59,238 0 5,084,225

lindsay Hypercube
simulator

19,257,147 0 0 19,257,147

Table 4.1: Programs used in the evaluations of dnmalloc

100 Improving memory management security for C and C++

SPEC CPU2000 Integer benchmark programs
Program Dlmalloc r/t (s) Dnmalloc r/t (s) R/t overhead
164.gzip 253 ± 0 253 ± 0 0%
175.vpr 361 ± 0.15 361.2 ± 0.14 0.05%
176.gcc 153.9 ± 0.05 154.1 ± 0.04 0.13%
181.mcf 287.3 ± 0.07 290.1 ± 0.07 1%

186.crafty 253 ± 0 252.9 ± 0.03 -0.06%
197.parser 347 ± 0.01 347 ± 0.01 0%

252.eon 770.3 ± 0.17 782.6 ± 0.1 1.6%
253.perlbmk 243.2 ± 0.04 255 ± 0.01 4.86%

254.gap 184.1 ± 0.03 184 ± 0 -0.04%
255.vortex 250.2 ± 0.04 223.6 ± 0.05 -10.61%
256.bzip2 361.7 ± 0.05 363 ± 0.01 0.35%
300.twolf 522.9 ± 0.44 511.9 ± 0.55 -2.11%

Allocator-intensive benchmarks
Program Dlmalloc r/t (s) Dnmalloc r/t (s) R/t overhead

boxed-sim 230.6 ± 0.08 232.2 ± 0.12 0.73%
cfrac 552.9 ± 0.05 587.9 ± 0.01 6.34%

espresso 60 ± 0.02 60.3 ± 0.01 0.52%
lindsay 239.1 ± 0.02 242.3 ± 0.02 1.33%

Table 4.2: Average macrobenchmark runtime results for dlmalloc and dnmalloc

curity of dnmalloc in Section 4.5.3 by running a set of exploits against real world
programs using both dlmalloc and dnmalloc.

Dnmalloc and all files needed to reproduce these benchmarks are available
publicly [196].

4.5.1 Performance

This section evaluates our countermeasure in terms of performance overhead. All
benchmarks were run on 10 identical machines (Pentium 4 2.80 Ghz, 512MB RAM,
no hyperthreading, Redhat 6.2, kernel 2.6.8.1).

Macrobenchmarks

To perform these benchmarks, the SPEC R© benchmark was run 10 times on these
PCs for a total of 100 runs for each allocator. The allocator-intensive benchmarks
were run 50 times on the 10 PCs for a total of 500 runs for each allocator.

Table 4.2 contains the average runtime (denoted as r/t in the table), including
standard error, of the programs in seconds. The results show that the runtime

4.5 Evaluation 101

Microbenchmarks
Program Dlmalloc r/t (s) Dnmalloc r/t (s) R/t Overh.

no memset: malloc 0.28721 ± 0.00108 0.06488 ± 0.00007 -77.41%
no memset: realloc 1.99831 ± 0.00055 1.4608 ± 0.00135 -26.9%

no memset: free 0.06737 ± 0.00001 0.03691 ± 0.00001 -45.21%
no memset: calloc 0.32744 ± 0.00096 0.2142 ± 0.00009 -34.58%

with memset: malloc 0.32283 ± 0.00085 0.39401 ± 0.00112 22.05%
with memset: realloc 2.11842 ± 0.00076 1.26672 ± 0.00105 -40.2%

with memset: free 0.06754 ± 0.00001 0.03719 ± 0.00005 -44.94%
with memset: calloc 0.36083 ± 0.00111 0.1999 ± 0.00004 -44.6%

Table 4.3: Average microbenchmark runtime results for dlmalloc and dnmalloc

overhead of our allocator are mostly negligible both for general programs as for
allocator-intensive programs. However, for perlbmk and cfrac the performance
overhead is slightly higher: 4% and 6%. These show that even for such programs
the overhead for the added security is extremely low. In some cases (vortex and
twolf) the allocator even improves performance. This is mainly because of im-
proved locality of management information in our approach: in general all the
management information for several chunks will be on the same page, which re-
sults in more cache hits [75]. When running the same tests on the same system
with L1 and L2 cache11 disabled, the performance benefit for vortex went down
from 10% to 4.5%.

Microbenchmarks

Listing 4.6: Example microbenchmark (no memset)

gett imeofday(&tv1 , 0) ;

while (i<LOOPS) {
randm = random () % 4081 ;
memarray [i] = mal loc (b a s e s i z e + randm) ;
i ++;
}

gett imeofday(&tv2 , 0) ;

11These are caches that are faster than the actual memory in a computer and are used to
reduce the cost of accessing general memory [171].

102 Improving memory management security for C and C++

d = (double) ((tv2 . t v s e c − tv1 . t v s e c) ∗ 1000000
+ (tv2 . tv us e c − tv1 . tv us e c)) / 1000000;

We have included two microbenchmarks. In the first microbenchmark, the time
that the program takes to perform 100,000 mallocs of random12 chunk sizes ranging
between 16 and 4096 bytes was measured (see Listing 4.6 for a code snippet).
Afterwards the time was measured for the same program to realloc these chunks
to different random size (also ranging between 16 and 4096 bytes). We then
measured how long it took the program to free those chunks and finally to calloc
100,000 new chunks of random sizes. The second benchmark does essentially the
same but also performs a memset13 on the memory it allocates (using malloc,
realloc and calloc). The microbenchmarks were each run 100 times on a single PC
(the same configuration as was used for the macrobenchmarks) for each allocator.

The average of the results (in seconds) of these benchmarks, including the
standard error, for dlmalloc and dnmalloc can be found in Table 4.3. Although it
may seem from the results of the loop program that the malloc call has an enormous
speed benefit when using dnmalloc, this is mainly because our implementation does
not access the memory it requests from the system. This means that on systems
that use optimistic memory allocation (which is the default behavior on Linux)
our allocator will only use memory when the program accesses it.

To measure the actual overhead of our allocator when the memory is accessed
by the application, we also performed the same benchmark in the program loop2,
but in this case always set all bytes in the acquired memory to a specific value.
Again there are some caveats in the measured result: while it may seem that
our calloc function is much faster, in fact it has the same overhead as the malloc
function followed by a call to memset (because calloc will call malloc and then set
all bytes in the memory to 0). However, the place where it is called in the program
is of importance here: it was called after a significant amount of chunks were freed
and as a result this call will reuse existing free chunks. Calling malloc in this case
would have produced similar results.

The main conclusion we can draw from these microbenchmarks is that the
performance of our implementation is very close to that of dlmalloc: it is faster
for some operations, but slower for others.

4.5.2 Memory overhead

Our implementation also has an overhead when it comes to memory usage: the
original allocator has an overhead of approximately 8 bytes per chunk. Our im-
plementation has an overhead of approximately 24 bytes to store the chunk in-
formation and for every 8 chunks, a lookup table entry will be used (4 bytes).

12A fixed seed was set so two runs of the program return the same results
13This call will fill a particular range in memory with a particular byte.

4.5 Evaluation 103

Depending on whether the chunks that the program uses are large or small, our
overhead could be low or high. To test the memory overhead on real world pro-
grams, we measured the memory overhead for the benchmarks we used to test
performance, the results (in megabytes) can be found in Table 4.4. They contain
the complete overhead of all extra memory the countermeasure uses compared to
dlmalloc.

SPEC CPU2000 Integer benchmark programs
Program dlmalloc mem. use (MB) our mem. use (MB) Overhead
164.gzip 180.37 180.37 0%
175.vpr 20.07 20.82 3.7%
176.gcc 81.02 81.14 0.16%
181.mcf 94.92 94.92 0%

186.crafty 0.84 0.84 0.12%
197.parser 30.08 30.08 0%

252.eon 0.33 0.34 4.23%
253.perlbmk 53.80 63.37 17.8%

254.gap 192.07 192.07 0%
255.vortex 60.17 63.65 5.78%
256.bzip2 184.92 184.92 0%
300.twolf 3.22 5.96 84.93%

Allocator-intensive benchmarks
Program dlmalloc mem. use (MB) our mem. use (MB) Overhead

boxed-sim 0.78 1.16 49.31%
cfrac 2.14 3.41 59.13%

espresso 5.11 5.88 15.1%
lindsay 1.52 1.57 2.86%

Microbenchmarks
loop/loop2 213.72 217.06 1.56%

Table 4.4: Average memory usage for dlmalloc and dnmalloc

In general, the relative memory overhead of our countermeasure is fairly low
(generally below 20%), but in some cases the relative overhead can be very high,
this is the case for twolf, boxed-sim and cfrac. These applications use many very
small chunks, so while the relative overhead may seem high, if we examine the
absolute overhead it is fairly low (ranging from 120 KB to 2.8 MB). Applications
that use larger chunks have a much smaller relative memory overhead.

104 Improving memory management security for C and C++

Exploit for Dlmalloc Dnmalloc
Wu-ftpd 2.6.1 [204] Shell Continues

Sudo 1.6.1 [92] Shell Crash
Sample heap-based buffer overflow Shell Continues

Sample double free Shell Continues

Table 4.5: Results of exploits against vulnerable programs protected with dnmalloc

4.5.3 Security evaluation

In this section we present experimental results when using our memory allocator
to protect applications with known vulnerabilities against existing exploits.

Table 4.5 contains the results of running several exploits against known vul-
nerabilities when these programs were compiled using dlmalloc and dnmalloc re-
spectively. When running the exploits against dlmalloc, we were able to execute
a code injection attack in all cases. However, when attempting to exploit dnmal-
loc, the overflow would write into adjacent chunks, but would not overwrite the
management information, as a result, the programs kept running.

These kinds of security evaluations can only prove that a particular attack
works, but it cannot disprove that no variation of this attack exists that does
work. Because of the fragility of exploits, a simple modification in which an extra
field is added to the memory management information for the program would cause
many exploits to fail. While this is useful against automated attacks, it does not
provide any real protection from a determined attacker. Testing exploits against
a security solution can only be used to prove that it can be bypassed. As such, we
provide these evaluations to demonstrate how our countermeasure performs when
confronted with a real world attack, but we do not make any claims as to how
accurately they evaluate the security benefit of dnmalloc.

However, the design in itself of the allocator gives strong security guarantees
against buffer overflows, since none of the memory management information is
stored with user data. We contend that it is impossible to overwrite it using a
heap-based buffer overflow. If such an overflow occurs, an attacker will start at a
chunk and will be able to overwrite any data that is behind it. Since such an buffer
overflow is contiguous, the attacker will not be able to overwrite the management
information. If an attacker is able to write until the management information, it
will be protected by the guard page. An attacker could use a pointer stored in
heap memory to overwrite the management information, but this would be a fairly
useless operation: the management information is only used to be able to modify
a more interesting memory location. If attackers already control a pointer they
could overwrite the target memory location directly instead of going through an
extra level of indirection.

Our approach does not detect when a buffer overflow has occurred. It is,

4.6 Related work 105

however, possible to easily and efficiently add such detection as an extension to
dnmalloc. A technique similar to the one used in [142, 100] could be added to
the allocator by placing a random number at the top of a chunk (where the old
management information used to be) and by mirroring that number in the man-
agement information. Before performing any heap operation (i.e., malloc, free,
coalesce, etc) on a chunk, the numbers would be compared and if changed, it
could report the attempted exploitation of a buffer overflow. This of course only
detects overflows which try to exploit the original problem that [142, 100] and we
address: overwriting of the management information. If an overflow overwrites a
pointer in another chunk and no heap operations are called, then the overflow will
go undetected.

A major advantage of this approach over [142] is that it does not rely on a
global secret value, but can use a per-chunk secret value. While this approach
would improve detection of possible attacks, it does not constitute the underlying
security principle, meaning that the security does not rely on keeping values in
memory secret.

Finally, our countermeasure (as well as other existing ones [68, 142]) focuses
on protecting this memory management information, it does not provide strong
protection to pointers stored by the program itself in the heap. There are no effi-
cient mechanisms yet to transparently and deterministically protect these pointers
from modification through all possible kinds of heap-based buffer overflows. In or-
der to achieve reasonable performance, countermeasure designers have focused on
protecting the most targeted pointers. Extending the protection to more pointers
without incurring a substantial performance penalty remains a challenging topic
for future research.

4.6 Related work14

Many countermeasures for code injection attacks exist. In this section, we briefly
describe the different approaches that could be applicable to protecting against
heap-based buffer overflows, but will focus more on the countermeasures which
are designed specifically to protect memory allocators from heap-based buffer over-
flows.

4.6.1 Protection from attacks on heap-based vulnerabilities

There are two types of allocators that try to detect or prevent heap overflow
vulnerabilities: debugging allocators and runtime allocators. Debugging allocators
are allocators that are meant to be used by the programmer. They can perform
extra checks before using the management information stored in the chunks or

14This section discusses work closely related to our countermeasure, a more extensive discussion
on the topic of countermeasures for code injection attacks can be found in section 2.4

106 Improving memory management security for C and C++

ensure that the chunk is allocated in such a way that it will cause an error if it
is overflowed or freed twice. Runtime allocators are meant to be used in final
programs and try to protect memory allocators by performing lightweight checks
to ensure that chunk information has not been modified by an attacker.

Debugging memory allocators

Dlmalloc has a debugging mode that will detect modification of the memory man-
agement information. When run in debug mode the allocator will check to make
sure that the next pointer of the previous chunk equals the current chunk and
that the previous pointer of the next chunk equals the current chunk. To exploit
a heap overflow or a double free vulnerability, the pointers to the previous chunk
and the next chunk must be changed.

Electric fence [129] is a debugging library that will detect both underflows
and overflows on heap-allocated memory. It operates by placing each chunk in a
separate page and by either placing the chunk at the top of the page and placing
a guard page before the chunk (underflow) or by placing the chunk at the end of
the page and placing a guard page after the chunk (overflow). This is an effective
debugging library but it is not realistic to use in a production environment because
of the large amount of memory it uses (every chunk is at least as large as a page,
which is 4kb on IA32) and because of the large performance overhead associated
with creating a guard page for every chunk. To detect dangling pointer references,
it can be set to never release memory back to the system. Instead, Electric fence
will mark it as inaccessible, this will however result in an even higher memory
overhead.

Runtime allocators

Robertson et al. [142] designed a countermeasure that attempts to protect against
attacks on the dlmalloc library management information. This is done by chang-
ing the layout of both allocated and unallocated memory chunks. To protect the
management information a checksum and padding (as chunks must be of double
word length) is added to every chunk. The checksum is a checksum of the man-
agement information encrypted (XOR) with a global read-only random value, to
prevent attackers from generating their own checksum. When a chunk is allocated
the checksum is added and when it is freed the checksum is verified. Thus if an
attacker overwrites this management information with a buffer overflow a subse-
quent free of this chunk will abort the program because the checksum is invalid.
However, this countermeasure can be bypassed if an information leak exists in
the program that would allow the attacker to print out the encryption key. The
attacker can then modify the chunk information and calculate the correct value
of the checksum. The allocator would then be unable to detect that the chunk
information has been changed by an attacker.

4.6 Related work 107

Dlmalloc 2.8.x also contains extra checks to prevent the allocator from writing
into memory that lies below the heap (this however does not stop it from writing
into memory that lies above the heap, such as the stack). It also offers a slightly
modified version of the Robertson countermeasure as a compile-time option.

ContraPolice [100] also attempts to protect memory allocated on the heap from
buffer overflows that would overwrite memory management information associated
with a chunk of allocated memory. It uses the same technique as proposed by
StackGuard [49], i.e., canaries, to protect these memory regions. It places a ran-
domly generated canary both before and after the memory region that it protects.
Before exiting from a string or memory copying function, a check is done to ensure
that, if the destination region was on the heap, the canary stored before the region
matches the canary stored after the region. If it does not, the program is aborted.
While this does protect the contents of other chunks from being overwritten using
one of these functions, it provides no protection for other buffer overflows. It also
does not protect a buffer from overwriting a pointer stored in the same chunk.
This countermeasure can also be bypassed if the canary value can be read: the
attacker could write past the canary and make sure to replace the canary with the
same value it held before.

Although no performance measurements were done by the author, it is reason-
able to assume that the performance overhead would be fairly low.

Recent versions of glibc [68] have added an extra sanity check to its allocator:
before removing a chunk from the doubly linked list of free chunks, the allocator
checks if the backward pointer of the chunk that the unlinking chunk’s forward
pointer points to is equal to the unlinking chunk. The same is done for the forward
pointer of the chunk’s backward pointer. It also adds extra sanity checks that make
it harder for an attacker to use the previously described technique of attacking
the memory allocator. However, recently, several attacks on this countermeasure
were published [130]. Although no data is available on the performance impact of
adding these lightweight checks, it is reasonable to assume that no performance
loss is incurred by performing them.

DieHard [15] in standalone mode is a memory allocator that will add protection
against accidental overflows of buffers by randomizing allocations. The allocator
will separate memory management information from the data in the heap. It will
also try to protect the contents of a chunk by allocating chunks of a specific chunk
size into a region at random positions in the region. This will make it harder
for an application to accidentally overwrite the contents of a chunk, however a
determined attacker could still exploit it by replicating the modified contents over
the entire region. Performance for this countermeasure is very good for some
programs (it improves performance for some) while relatively high for others. The
work on DieHard was done in parallel to the countermeasure discussed in this
document.

108 Improving memory management security for C and C++

4.6.2 Alternative approaches

Other approaches that protect against the more general problem of buffer overflows
also protect against heap-based buffer overflows. In this section, we give a brief
overview of this work. A more extensive survey can be found in [198].

Safe languages

Safe languages are languages where it is generally not possible for any known
code injection vulnerability to exist as the language constructs prevent them from
occurring. A number of safe languages are available that will prevent these kinds of
implementation vulnerabilities entirely. Examples of such languages include Java
and ML but these are not in the scope of our discussion. However there are safe
languages [87, 74, 121, 105, 55, 98] that remain as close to C or C++ as possible,
these are generally referred to as safe dialects of C. While some safe languages [44]
try to stay more compatible with existing C programs, use of these languages may
not always be practical for existing applications.

Compiler-based countermeasures

Bounds checking [8, 89, 144, 193] is the ideal solution for buffer overflows, however
performing bounds checking in C can have a severe impact on performance or may
cause existing object code to become incompatible with bounds checked object
code.

Protection of all pointers as provided by PointGuard [48] is an efficient imple-
mentation of a countermeasure that will encrypt (using XOR) all pointers stored
in memory with a randomly generated key and decrypts the pointer before loading
it into a register. To protect the key, it is stored in a register upon generation and
is never stored in memory. However attackers could guess the decryption key if
they were able to view several different encrypted pointers. Another attack, de-
scribed in [4] describes how an attacker could bypass PointGuard by overwriting
a particular byte of the pointer. By modifying one byte, the pointer value has
changed but the three remaining bytes will still decrypt correctly because of the
weakness of XOR encryption. This significantly reduces the randomness (if only
one byte needs to be overwritten, an attacker has a 1 in 256 chance of guessing
the correct one, if two bytes are overwritten the chances are 1 in 65536, which is
still significantly less than 1 in 232.

Another countermeasure that protects all pointers is the Security Enforcement
Tool [194] where runtime protection is performed by keeping a status bit for every
byte in memory, that determines if writing to a specific memory region via an
unsafe pointer is allowed or not.

4.6 Related work 109

Operating system-based countermeasures

Non-executable memory [170, 161] tries to prevent code injection attacks by ensur-
ing that the operating system does not allow execution of code that is not stored
in the text segment of the program. This type of countermeasure can however
be bypassed by a return-into-libc attack [188] where an attacker executes existing
code (possibly with different parameters).

Randomized instruction sets [12, 93] also try to prevent an attacker from exe-
cuting injected code by encrypting instructions on a per process basis while they
are in memory and decrypting them when they are needed for execution. However,
software based implementations of this countermeasure incur large performance
costs, while a hardware implementation is not immediately practical. Determined
attackers may also be able to guess the encryption key and, as such, be able to
inject code [163].

Address randomization [170, 18] is a technique that attempts to provide se-
curity by modifying the locations of objects in memory for different runs of a
program, however the randomization is limited in 32-bit systems (usually to 16
bits for the heap) and as a result may be inadequate for a determined attacker
[151].

Library-based countermeasures

LibsafePlus [9] protects programs from all types of buffer overflows that occur
when using unsafe C library functions (e..g strcpy). It extracts the sizes of the
buffers from the debugging information of a program and as such does not require
a recompile of the program if the symbols are available. If the symbols are not
available, it will fall back to less accurate bounds checking as provided by the
original Libsafe [11] (but extended beyond the stack). The performance of the
countermeasure ranges from acceptable for most benchmarks provided to very
high for one specific program used in the benchmarks

Execution monitoring

In this section we describe two countermeasures that monitor the execution of a
program and prevent transferring control-flow which could be unsafe.

Program shepherding [96] is a technique that monitors the execution of a pro-
gram and will disallow control-flow transfers15 that are not considered safe. An
example of a use for shepherding is to enforce return instructions to only return to
the instruction after the call site. The proposed implementation of this counter-
measure is done using a runtime binary interpreter. As a result, the performance
impact of this countermeasure is significant for some programs, but acceptable for
others.

15Such a control flow transfer occurs when e.g., a call or ret instruction is executed.

110 Improving memory management security for C and C++

Control-flow integrity [1] determines a program’s control flow graph beforehand
and ensures that the program adheres to it. It does this by assigning a unique ID to
each possible control flow destination of a control flow transfer. Before transferring
control flow to such a destination, the ID of the destination is compared to the
expected ID, and if they are equal, the program proceeds as normal. Performance
overhead may be acceptable for some applications, but may be prohibitive for
others.

4.7 Conclusion

In this paper we examined the security of several memory allocators. We dis-
cussed how they could be exploited and showed that most memory allocators are
vulnerable to code injection attacks.

Afterwards, we presented a redesign for existing memory allocators that is more
resilient to these attacks than existing allocator implementations. We implemented
this design by modifying an existing memory allocator. This implementation has
been made publicly available. We demonstrated that it has a negligible, some-
times even beneficial, impact on performance. The overhead in terms of memory
usage is very acceptable. Although our approach is straightforward, surprisingly,
it offers stronger security than comparable countermeasures with similar perfor-
mance overhead because it does not rely on the secrecy of random numbers stored
in memory.

Chapter 5

Conclusion

Using the survey presented in chapter 2 we identified a number of areas in which
countermeasures could be designed that improve the state-of-the-art of current
countermeasures. The main design premise was to model countermeasures the
same way that code and data are generally stored in separate memory regions in
modern operating systems. This same separation can be applied to data: regular
data can be stored separately from code data. If the mechanisms that are used to
implement the abstractions provided by high level-languages are stored separately
from regular data, it becomes harder for attackers to exploit them to gain control
of the program’s execution flow.

In this chapter, we summarize our main contributions and present a number
of countermeasures that are currently being designed and implemented. We also
discuss future research opportunities, challenges and application domains that new
technologies offer when it comes to building countermeasures.

5.1 Contributions

During the four years of research that led to this dissertation, a number of contri-
butions were made to the systems security domain.

First, an extensive survey was performed of vulnerabilities and countermea-
sures that are published for C and C++ [197, 198]. This survey presents a classifi-
cation and evaluation framework for existing and future countermeasures, allowing
countermeasures to be more easily compared with respect to several important cri-
teria like efficiency, completeness and automatization.

Based on this survey, a more structured approach to designing vulnerabilities
was suggested [199]. This approach allows a countermeasure designer to more
easily consider the impact of a specific countermeasure on the entire system and
allows an evaluation of the possible benefits and drawbacks without first doing an

111

112 Conclusion

expensive implementation.
This methodology formed the basis in the design of three countermeasures for

buffer overflows in different segments of memory, based on the premise that code
data and regular data should be separated from each other.

• A countermeasure was designed and implemented which better protects
against stack-based buffer overflows (see Chapter 3). This countermeasure
provides protection by dividing the stack into multiple stacks, depending on
the type of data stored on the stack. Each type of data is assigned a target
and source value. The target value depends on how valuable the type of data
is to an attacker as a target for attack. For example the return address has
a high target value because control over this memory location would give
attackers immediate control of the execution flow, while an array of char-
acters has a low target value, because being able to modify the contents of
an array of characters generally does not allow an attacker to gain control
of the program’s execution flow. The source value depends on how likely an
attacker can use the type of data to perform an attack. An array of charac-
ters has a high source value, because arrays of characters are generally the
ones that are vulnerable to buffer overflows since they are often used with
functions like strcpy. A return address has a low source value, because an
attacker generally does not have direct control of this data without using a
vulnerability. Using these values, the stack is divided into multiple stacks:
data with low source and high target values are stored together and vice
versa. Depending on the amount of memory that is available compared to
the amount of protection that is required, the number of stacks can be in-
creased or reduced. Unlike similar countermeasures that are equally efficient
and automatic, this countermeasure does not rely on the use of random num-
bers that must remain secret. This means that the countermeasure retains
its security properties even if attackers have read access to memory.

• In addition, a countermeasure was designed and implemented which provides
better protection against heap-based buffer overflows (see Chapter 4). This
countermeasure consists of a technique to efficiently separate the memory
management information that is often a target for attack from the regu-
lar data stored on the heap. By storing the management information in a
separate contiguous memory region, we can prevent an attacker from over-
writing it directly using a heap-based buffer overflow. Our implementation
demonstrates that this can be done efficiently. Like the stack-based counter-
measure, it offers better protection than countermeasures that offered similar
performance results because it does not rely on the use of random numbers.

• A third countermeasure that was designed provides similar protection against
exploitation of buffer overflows in the data and bss segments [202]. This
countermeasure was not implemented because the technique was similar to

5.2 Future work 113

the one used in the stack-based countermeasure. In this countermeasure,
data is also separated from other data based on similar target and source
values.

These countermeasures improve the protection provided against buffer over-
flows while retaining the efficiency and automatization that similar countermea-
sures that focus on these two properties offer.

5.2 Future work

The author of the dissertation is currently involved in the design and implementa-
tion of a number of new countermeasures that can provide better protection against
the vulnerabilities discussed in this dissertation. We discuss two countermeasures
here, while a third is discussed in the next section.

5.2.1 A bounds checker for pointer arithmetic

During a research stay at Stony Brook University, the author designed a third
countermeasure that performs bounds checking for C. This is achieved by introduc-
ing extra checks when pointer arithmetic is performed. Current bounds checkers
usually perform their checks when a pointer is dereferenced. By doing the check
at calculation-time instead of when the pointer is dereferenced, a performance in-
crease should be achieved. Whenever an object is allocated in memory, the entire
memory space of that object is marked with a unique value, which we call a label.
Whenever pointer arithmetic is performed with a pointer that refers to an object,
the label of the object the pointer refers to is compared to the label of the result of
the arithmetic. If they are not equal, then a pointer has been created that points
out of bounds of the object. This work is still in progress, however, we expect
the countermeasure to be complete and compatible with existing code. Our focus
has been mainly on making the bounds checker more efficient and on ensuring its
scalability, so that it could be used in production systems.

5.2.2 A countermeasure for dangling pointer references

This countermeasure is based on the experience that was gained from developing
the bounds checker, but focuses on dangling pointer references. Existing counter-
measures for dangling pointer references [53] suffer from a high performance impact
because many checks must be performed to prevent dangling pointers from being
used. The countermeasure that will be developed is expected to be more efficient
by keeping a reverse mapping from the object to the pointer. When a pointer is
set to refer to an object, a reverse mapping from the object to the pointer is added.
When an object is freed, the mapping is used to invalidate all pointers that refer

114 Conclusion

to this object. When the program tries to dereference such a dangling pointer, a
crash will occur, preventing the pointer from being used in an invalid manner.

5.3 Future research opportunities and application
domains

In this section, we discuss research opportunities offered and challenges posed by a
number of new and recent technologies with respect to the design of new counter-
measures. We also discuss possible new application domains for countermeasures
against code injection attacks.

5.3.1 Embedded systems and mobile devices

New technologies like embedded systems, sensor networks and mobile devices
present new challenges. These systems must often work with very limited re-
sources, making the use of C a necessity, resulting in the same problems as in
traditional architectures. Due to the specific requirements of these systems, the
countermeasures will also look different from the ones for traditional systems,
although the same basic ideas could be ported to these devices. Many types
of embedded devices exist, running on a large number of different architectures.
While the large amount of architectures makes it harder for attackers to exploit
vulnerabilities, it also makes it harder to build countermeasures.

In August 2006, a number of vulnerabilities [125, 126] were discovered in
LibTIFF 1. LibTIFF is used in a number of desktop operating systems, like Linux
and Mac OS X. It is also used on the Apple iPhone, where this vulnerability was
widely exploited by users of the iPhone [119] to perform a “jailbreak” 2. This
vulnerability can be triggered in both MobileMail (the iPhone mail client) and
MobileSafari (the iPhone web browser) and as a result is remotely exploitable by
letting the user browse to a site containing a specific TIFF file or by emailing a
TIFF file to the user.

This vulnerability was also present on another mobile device: the Sony PlaySta-
tion Portable, where it was also exploited to allow behavior not condoned by the
manufacturer. In this case, the vulnerability was used to gain more permissions
to allow users to run homebrew3 games.

1LibTIFF is a library for reading and writing TIFF files, a popular image format
2By default, it is not possible for users to install additional native applications on the iPhone.

The term jailbreaking refers to the escaping of these limitations, allowing users to gain full control
of the device.

3Homebrew games are games that are typically produced by consumers and are generally not
authorized (or digitally signed) by the manufacturer of the product, resulting in the need to
circumvent security restrictions on the device before they can be played.

5.3 Future research opportunities and application domains 115

These examples show that software originally designed for desktop environ-
ments is being ported widely to these new devices, resulting in the same types of
vulnerabilities being present in these devices. As more and more of these devices
enter the market, similar vulnerabilities will be discovered and exploited.

Very few countermeasures currently exist for embedded systems. The most
important countermeasure that is currently deployed on these systems is the stack
cookie protection in Windows CE 6. This countermeasure is based on the Stack-
Guard countermeasure [49], which places a random (secret) number before the
return address upon function entry and verifies that the number has not changed
before returning from the function. The underlying idea is that an attacker will be
unable to overwrite the return address without also modifying the random num-
ber. This number must remain a secret, otherwise an attacker can just restore the
number while overwriting. This is an inherent weakness in this approach.

Many of the countermeasures that are currently in use on desktop systems can
be ported to embedded devices. However, due to limited memory and processing
power, efficiency becomes a more important concern on these devices. Several
other limitations in the architecture may also be an issue when trying to port
countermeasures to these architectures. For example, many architectures have no
support for paging, making it hard to implement a countermeasure like address
space layout randomization (ASLR) on these devices.

Another important issue with porting desktop countermeasures to embedded
devices is the fact that many desktop countermeasures were designed with a specific
architecture or operating system in mind. This can make porting more difficult
and prone to being bypassed. When a countermeasure is ported, the countermea-
sure developer must ensure that the countermeasure cannot easily be bypassed
on the new platform. An example of such porting going wrong occurred when
Microsoft ported the StackGuard countermeasure [49] from GCC to Visual Studio
[31]. The specifics of the Windows operating system were not taken into account,
which resulted in attackers being able to bypass the countermeasure by ignoring
the return address and continuing to write on the stack until they overwrote the
function pointers used for exception handling. Subsequently, an exception would
be generated by the attackers and their injected code would be executed [113]. A
possible way to prevent these types of problems when porting countermeasures to
a new platform is to use machine model aided countermeasures [199].

5.3.2 Virtual machine monitors

Other technologies like virtual machine monitors can also form the basis for design-
ing new countermeasures. Due to the rise of efficient virtual machine monitors, it
is possible to design countermeasures at a lower level than was previously possible:
if a program is running in a virtual machine, it is possible to modify the entire
architecture to fix a security problem, rather than having to work around specific
problems of a certain architecture. This can be useful in designing prototypes that

116 Conclusion

can either be applied to future revisions of the architecture or can be applied in
an environment in which virtual machine monitors are used.

We are currently in the process of designing and implementing a countermea-
sure that makes use of a virtual machine monitor to protect against the vulnerabil-
ities discussed in this dissertation. The countermeasure is based on the observation
that many exploits that result in code execution, rely on modifying the value of
a pointer. In this countermeasure, all pointers are stored in read-only memory
preventing them from being modified directly by a vulnerability. Whenever the
program writes to a pointer, the compiler generates a special instruction that can
be used to write to this pointer. This instruction will be emulated by the virtual
machine monitor. If a vulnerability exists in a program that allows an attacker to
overwrite arbitrary memory locations, this is prevented because only the special
instruction can write to pointers. Since attackers are not be able to generate this
special instruction until they are able to achieve code execution, this countermea-
sure would provide a significant improvement in protection against exploitation of
these vulnerabilities. Once the prototype has determined whether this approach
is feasible or not, it could be used as the basis for possible later revisions of the
architecture.

Bibliography

[1] Martin Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security, pages 340–353, Alexandria, Virginia, U.S.A.,
November 2005. ACM.

[2] Robert P. Abbott, Janet S. Chin, James. E. Donnelley, William L. Konigs-
ford, Shigeru Tokubo, and Douglas A. Webb. Security analysis and enhance-
ments of computer operating systems. Technical report, 1976.

[3] Aleph One. Smashing the stack for fun and profit. Phrack, 49, 1996.

[4] Steven Alexander. Defeating compiler-level buffer overflow protection. ;login:
The USENIX Magazine, 30(3), June 2005.

[5] anonymous. Once upon a free(). Phrack, 57, 2001.

[6] Ken Ashcraft and Dawson Engler. Using programmer-written compiler ex-
tensions to catch security holes. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 143–159, Berkeley, California, USA, May 2002.
IEEE Computer Society, IEEE Press.

[7] Taimur Aslam. A taxonomy of security faults in the unix operating system.
Master’s thesis, Purdue University, 1995.

[8] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of
all pointer and array access errors. In Proceedings of the ACM SIGPLAN ’94
Conference on Programming Language Design and Implementation, pages
290–301, Orlando, Florida, U.S.A., June 1994. ACM.

[9] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tied, libsafeplus: Tools
for runtime buffer overflow protection. In Proc. of the 13th USENIX Security
Symp., San Diego, CA, August 2004.

117

118 BIBLIOGRAPHY

[10] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Binary rewriting and
call interception for efficient runtime protection against buffer overflows: Re-
search articles. Software – Practice & Experience, 36(9):971–998, 2006.

[11] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-time
defense against stack smashing attacks. In USENIX 2000 Annual Technical
Conference Proceedings, pages 251–262, San Diego, California, U.S.A., June
2000. USENIX Association.

[12] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S.
Palmer, Darko Stefanović, and Dino Dai Zovi. Randomized instruction set
emulation to disrupt binary code injection attacks. In Proceedings of the 10th
ACM Conference on Computer and Communications Security (CCS2003),
pages 281–289, Washington, District of Columbia, U.S.A., October 2003.
ACM.

[13] BBP. BSD heap smashing. http://www.security-protocols.com/
modules.php?name=News&file=article&sid=1586, May 2003.

[14] Emery D. Berger and Benjamin G. Zorn. Diehard: probabilistic memory
safety for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
conference on Programming language design and implementation, pages 158–
168, Ottawa, Ontario, Canada, 2006. ACM Press.

[15] Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic mem-
ory safety for unsafe languages. In ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation (PLDI 2006), Ottawa,
Canada, June 2006.

[16] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Com-
posing high-performance memory allocators. In Proceedings of the ACM
SIGPLAN 2001Conference on Programming Language Design and Imple-
mentation (PLDI), pages 114–124, Snowbird, Utah, U.S.A., June 2001.

[17] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Reconsider-
ing custom memory allocation. In Proceedings of the 2002 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA), pages 1–12, Seattle, Washington, U.S.A., November
2002. ACM, ACM Press.

[18] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error exploits. In
Proceedings of the 12th USENIX Security Symposium, pages 105–120, Wash-
ington, District of Columbia, U.S.A., August 2003. USENIX Association.

BIBLIOGRAPHY 119

[19] Sandeep Bhatkar and R. Sekar. Data space randomization. Technical report,
Secure Systems Labratory, Stony Brook University, February 2008.

[20] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In 14th USENIX
Security Symposium, Baltimore, MD, August 2005. USENIX Association.

[21] Richard Bisbey II and Dennis Hollingsworth. Protection analysis project:
Final report. Technical report, Information Sciences Institute, University of
Southern California, 1978.

[22] Matt Bishop. A taxonomy of UNIX system and network vulnerabilities.
Technical Report CSE-9510, Department of Computer Science, University
of California at Davis, May 1995.

[23] Matt Bishop. Vulnerability analysis. In Proceedings of Recent Advances in
Intrusion Detection 1999, pages 125–136, West Lafayette, Indiana, U.S.A.,
September 1999.

[24] Matt Bishop and Dave Bailey. A critical analysis of vulnerability taxonomies.
Technical report, Department of Computer Science, University of California
at Davis, 1996.

[25] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Lau-
rent Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival.
A static analyzer for large safety-critical software. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implemen-
tation, pages 196–207, San Diego, California, USA, 2003. ACM Press.

[26] blexim. Basic integer overflows. Phrack, 60, December 2002.

[27] Hans Boehm. Conservative gc algroithmic overview. http://www.hpl.hp.
com/personal/Hans_Boehm/gc/gcdescr.html.

[28] Hans Boehm. A garbage collector for c and c++. http://www.hpl.hp.com/
personal/Hans_Boehm/gc/.

[29] Hans Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software, Practice and Experience, 18(9):807–820, September
1988.

[30] Brandon Bray. Compiler security checks in depth. http:
//msdn.microsoft.com/library/en-us/dv_vstechart/html/
vctchCompilerSecurityChecksInDepth.asp, February 2002.

[31] Brandon Bray. Security improvements to the whidbey compiler. http://
weblogs.asp.net/branbray/archive/2003/11/11/51012.aspx, Novem-
ber 2003.

120 BIBLIOGRAPHY

[32] David Brumley, Tzi-cker Chiueh, Robert Johnson, Huijia Lin, and Dawn
Song. Rich: Automatically protecting against integer-based vulnerabilities.
In Proceedings of the 14th Annual Network and Distributed System Security
Symposium, San Diego, California , U.S.A., March 2007. Internet Society.

[33] Danilo Bruschi, Emilia Rosti, and Banfi R. A tool for pro-active defense
against the buffer overrun attack. In Proceedings of the 5th European Sym-
posium on Research in Computer Security (ESORICS), volume 1485 of Lec-
ture Notes in Computer Science, pages 17–31, Louvain-la-Neuve, Belgium,
1998. Springer.

[34] Bulba and Kil3r. Bypassing Stackguard and stackshield. Phrack, 56, 2000.

[35] William Bush, Jonathan Pincus, and David Sielaff. A static analyzer for
finding dynamic programming errors. Software: Practice and Experience,
30(7):775–802, June 2000. ISSN: 0038-0644.

[36] Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson
Engler. Exe: automatically generating inputs of death. In Proceedings of the
13th ACM Conference on Computer and Communications Security, Alexan-
dria, Virginia, U.S.A., November 2006. ACM Press.

[37] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforc-
ing data-flow integrity. In Proceedings of the 7th symposium on Operating
Systems Design and Implementation, pages 147–160, Seattle, Washingotn,
U.S.A., November 2006. Usenix.

[38] Shun Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Ravis-
hankar K. Iyer. Defeating memory corruption attacks via pointer taintedness
detection. In Proceedings of the 2005 International Conference on Depend-
able Systems and Networks, Yokohama, Japan, June 2005. IEEE Press.

[39] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K.
Iyer. Non-control-data attacks are realistic threats. In Proc. of the 14th
USENIX Security Symp., Baltimore, MD, August 2005.

[40] Brian V. Chess. Improving Computer Security using Extended Static Check-
ing. In Proceedings of the IEEE Symposium on Security and Privacy, pages
160–173, Berkeley, California, U.S.A., May 2002. IEEE Press.

[41] Monica Chew and Dawn Song. Mitigating buffer overflows by operating
system randomization. Technical Report CMU-CS-02-197, Carnegie Mellon
University, December 2002.

[42] T. Chiueh and Fu-Hau Hsu. RAD: A compile-time solution to buffer overflow
attacks. In Proceedings of the 21st International Conference on Distributed

BIBLIOGRAPHY 121

Computing Systems, pages 409–420, Phoenix, Arizona, USA, April 2001.
IEEE Computer Society, IEEE Press.

[43] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George
Necula. Dependent types for low-level programming. In Proceedings of the
16th European Symposium on Programming, Braga, Portugal, March 2007.
Springer-Verlag.

[44] Jeremy Condit, Matthew Harren, Scott McPeak, George C. Necula, and
Westley Weimer. CCured in the real world. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation, pages 232–244, San Diego, California, U.S.A., 2003. ACM.

[45] Matt Conover. w00w00 on heap overflows. http://www.w00w00.org/files/
articles/heaptut.txt, 1999.

[46] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike
Frantzen, and Jamie Lokier. FormatGuard: Automatic protection from
printf format string vulnerabilities. In Proceedings of the 10th USENIX Secu-
rity Symposium, pages 191–200, Washington, District of Columbia, U.S.A.,
August 2001. USENIX Association.

[47] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry Wagle,
and Eric Walthinsen. Protecting systems from stack smashing attacks with
StackGuard. In Proceedings of Linux Expo 1999, Raleigh, North Carolina,
U.S.A., May 1999.

[48] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-
Guard: protecting pointers from buffer overflow vulnerabilities. In Proceed-
ings of the 12th USENIX Security Symposium, pages 91–104, Washington,
District of Columbia, U.S.A., August 2003. USENIX Association.

[49] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang.
StackGuard: Automatic adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security Symposium, pages 63–
78, San Antonio, Texas, U.S.A., January 1998. USENIX Association.

[50] Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan
Walpole. Buffer overflows: Attacks and defenses for the vulnerability of
the decade. In Proceedings of the DARPA Information Survivability Confer-
ence & Exposition, volume 2, pages 119–129, Hilton Head, South Carolina,
U.S.A., January 2000.

[51] Joan Daemen and Vincent Rijmen. Rijndael, the advanced encryption stan-
dard. Dr. Dobb’s Journal, 26(3), March 2001.

122 BIBLIOGRAPHY

[52] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds
checking for c with very low overhead. In Proceeding of the 28th international
conference on Software engineering, pages 162–171, Shanghai, China, 2006.
ACM Press.

[53] Dinakar Dhurjati and Vikram Adve. Efficiently detecting all dangling pointer
uses in production servers. In Proceedings of the International Conference
on Dependable Systems and Networks, pages 269–280, Philadelphia, Penn-
sylvania, U.S.A., 2006. IEEE Computer Society.

[54] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Safecode: enforcing
alias analysis for weakly typed languages. In Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and implementation,
pages 144–157, Ottawa, Ontario, Canada, 2006. ACM Press.

[55] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. Mem-
ory safety without runtime checks or garbage collection. In Proceedings of
the 2003 ACM SIGPLAN Conference on Language, Compiler, and Tool Sup-
port for Embedded Systems, pages 69–80, San Diego, California, U.S.A., June
2003. ACM.

[56] Igor Dobrovitski. Exploit for CVS double free() for linux pserver. http:
//seclists.org/lists/bugtraq/2003/Feb/0042.html, February 2003.

[57] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cleanness checking of string
manipulation in C programs via integer analysis. In Proceedings of the Eight
International Static Analysis Symposium, volume 2126 of Lecture Notes in
Computer Science, pages 194–212, Paris, France, July 2001. Springer-Verlag.

[58] Computer Economics. 2001 economic impact of malicious code at-
tacks. http://www.computereconomics.com/article.cfm?id=133, Jan-
uary 2002.

[59] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference
Manual. Addison Wesley, 1990.

[60] Úlfar Erlingsson. Low-level software security: Attacks and defenses. Tech-
nical Report MSR-TR-2007-153, Microsoft Research, November 2007.

[61] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security poli-
cies: A retrospective. In Proceedings of the New Security Paradigm Work-
shop, pages 87–95, Caledon Hills, Ontario, Canada, September 1999. ACM.

[62] Hiroaki Etoh and Kunikazu Yoda. Protecting from stack-smashing attacks.
Technical report, IBM Research Divison, Tokyo Research Laboratory, June
2000.

BIBLIOGRAPHY 123

[63] David Evans and Andrew Twyman. Flexible policy-directed code safety.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 32–
45, Oakland, California, U.S.A., May 1999. IEEE Computer Society, IEEE
Press.

[64] Christof Fetzer and Zhen Xiao. Detecting heap smashing attacks through
fault containment wrappers. In Proceedings of the 20th IEEE Symposium on
Reliable Distributed Systems (SRDS’01), pages 80–89, New Orleans, Lou-
siana, U.S.A., October 2001. IEEE Computer Society, IEEE Press.

[65] George Fink and Matt Bishop. Property-based testing: A new approach
to testing for assurance. ACM SIGSOFT Software Engineering Notes,
22(4):74–80, July 1997.

[66] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A sense of self for unix processes. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 120–128, Oakland, California,
U.S.A., May 1996. IEEE Computer Society, IEEE Press.

[67] Mike Frantzen and Mike Shuey. StackGhost: Hardware facilitated stack
protection. In Proceedings of the 10th USENIX Security Symposium, pages
55–66, Washington, District of Columbia, U.S.A., August 2001. USENIX
Association.

[68] Free Software Foundation. The gnu c library. http://www.gnu.org/
software/libc.

[69] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David
Vitek. Buffer overrun detection using linear programming and static analy-
sis. In Proceedings of the 10th ACM conference on Computer and Commu-
nication Security, pages 345–354, Washington, District of Columbia, U.S.A.,
October 2003. ACM Press.

[70] Anup K. Ghosh and Tom O’Connor. Analyzing programs for vulnerability
to buffer overrun attacks. In Proceedings of the 21st NIST-NCSC National
Information Systems Security Conference, pages 274–382, October 1998.

[71] Wolfram Gloger. ptmalloc. http://www.malloc.de/en/.

[72] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A secure
environment for untrusted helper applications. In Proceedings of the 6th
USENIX Security Symposium, pages 1–13, San Jose, California, U.S.A., July
1996. USENIX Association.

[73] Richard Grimes. Preventing buffer overflows in C++. Dr Dobb’s Journal:
Software Tools for the Professional Programmer, 29(1):49–52, January 2004.

124 BIBLIOGRAPHY

[74] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang,
and James Cheney. Region-based memory management in cyclone. In Pro-
ceedings of the 2002 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 282–293, Berlin, Germany, June 2002.

[75] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache
locality of memory allocation. In Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation (PLDI),
pages 177–186, New York, New York, U.S.A., June 1993.

[76] Brian Hackett, Manuvir Das, Daniel Wang, and Zhe Yang. Modular checking
for buffer overflows in the large. In Proceeding of the 28th international
conference on Software engineering, pages 232–241, Shanghai, China, 2006.
ACM Press.

[77] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter ’92 USENIX conference,
pages 125–136, San Francisco, California, U.S.A., January 1992. USENIX
Association.

[78] Eric Haugh and Matt Bishop. Testing C programs for buffer overflow vulner-
abilities. In Proceedings of the 10th Network and Distributed System Security
Symposium (NDSS’03), San Diego, California, U.S.A., February 2003. Inter-
net Society.

[79] John L. Henning. Spec cpu2000: Measuring cpu performance in the new
millennium. Computer, 33(7):28–35, July 2000.

[80] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Experience
with safe manual memory-management in cyclone. In Proceedings of the 4th
international symposium on Memory management, pages 73–84, Vancouver,
BC, Canada, 2004. ACM Press.

[81] Gerard J. Holzmann. Static source code checking for user-defined proper-
ties. In Proceedings of The 6th World Conference on Integrated Design &
Process Technology, Pasadena, California, U.S.A., 2002. Society for Design
and Process Science.

[82] John D. Howard. An Analysis Of Security Incidents On The Internet 1989-
1995. PhD thesis, Carnegie Mellon University., 1997.

[83] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft Press,
2001.

BIBLIOGRAPHY 125

[84] Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David
Evans, John C. Knight, Anh Nguyen-Tuong, and Jonathan Rowanhill. Se-
cure and practical defense against code-injection attacks using software dy-
namic translation. In Proceedings of the 2nd international conference on
Virtual execution environments, pages 2–12, Ottawa, Ontario, Canada, 2006.
ACM Press.

[85] Cisco Systems Inc. Cisco 2007 annual security report. http:
//www.cisco.com/web/about/security/cspo/docsCisco2007Annual_
Security_Report.pdf.

[86] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual
Volume 1: Basic Architecture, 2001. Order Nr 245470.

[87] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference, pages 275–288, Monterey, California, U.S.A., June
2002. USENIX Association.

[88] ’Mark S. Johnstone and Paul R. Wilson. The memory fragmentation prob-
lem: Solved? In Proceedings of the 1st ACM SIGPLAN International Sym-
posium on Memory Management, pages 26–36, Vancouver, British Columbia,
Canada, October 1998. ACM, ACM Press.

[89] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in C programs. In Proceedings of the
3rd International Workshop on Automatic Debugging, number 009-02 in
Linköping Electronic Articles in Computer and Information Science, pages
13–26, Linköping, Sweden, 1997. Linköping University Electronic Press.

[90] JTC 1/SC 22/WG 14. ISO/IEC 9899:1999: Programming languages – C.
Technical report, International Organization for Standards, 1999.

[91] Michel Kaempf. Vudo - an object superstitiously believed to embody magical
powers. Phrack, 57, 2001.

[92] Michel MaXX Kaempf. Sudo ¡ 1.6.3p7-2 exploit. http://
packetstormsecurity.org/0211-exploits/hudo.c.

[93] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering
code-injection attacks with instruction-set randomization. In Proceedings
of the 10th ACM Conference on Computer and Communications Security
(CCS2003), pages 272–280, Washington, District of Columbia, U.S.A., Oc-
tober 2003. ACM.

126 BIBLIOGRAPHY

[94] Samuel C. Kendall. Bcc: Runtime checking for C programs. In Proceedings
of the USENIX Summer 1983 Conference, pages 5–16, Toronto, Ontario,
Canada, July 1983. USENIX Association.

[95] Brian Kernighan and Dennis Ritchie. The C Programming Language. Pren-
tice Hall Software Series, second edition edition, 1988.

[96] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure exe-
cution via program shepherding. In Proceedings of the 11th USENIX Secu-
rity Symposium, San Francisco, California, U.S.A., August 2002. USENIX
Association.

[97] klog. The frame pointer overwrite. Phrack, 55, 1999.

[98] Sumant Kowshik, Dinakar Dhurjati, and Vikram Adve. Ensuring code safety
without runtime checks for real-time control systems. In Proceedings of
the International Conference on Compilers Architecture and Synthesis for
Embedded Systems, pages 288–297, Grenoble, France, October 2002.

[99] Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel
Mehta, and Riley Hassell. The Shellcoder’s Handbook : Discovering and
Exploiting Security Holes. John Wiley & Sons, March 2004.

[100] Andreas Krennmair. ContraPolice: a libc extension for protecting
applications from heap-smashing attacks. http://www.synflood.at/
contrapolice/, November 2003.

[101] Lap-chung Lam and Tzi-cker Chiueh. Checking array bound violation using
segmentation hardware. In Proceedings of the 2005 International Conference
on Dependable Systems and Networks, pages 388–397, Yokohama, Japan,
2005. IEEE Computer Society.

[102] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi.
A taxonomy of computer program security flaws, with examples. Technical
report, 1993.

[103] David Larochelle and David Evans. Statically detecting likely buffer over-
flow vulnerabilities. In Proceedings of the 10th USENIX Security Sympo-
sium, pages 177–190, Washington, District of Columbia, U.S.A., August
2001. USENIX Association.

[104] Eric Larson and Todd Austin. High coverage detection of input-related secu-
rity faults. In Proceedings of the 12th USENIX Security Symposium, pages
121–136, Washington, District of Columbia, U.S.A., August 2003. USENIX
Association.

BIBLIOGRAPHY 127

[105] James R. Larus, Thomas Ball, Manuvir Das, Robert DeLine, Manuel Fähn-
drich, Jon Pincus, Sriram K. Rajamani, and Ramanathan Venkatapathy.
Righting software. IEEE Software, 21(3):92–100, May/June 2004.

[106] Chris Lattner and Vikram Adve. Automatic Pool Allocation: Improving Per-
formance by Controlling Data Structure Layout in the Heap. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, Chigago, Illinois, June 2005. ACM Press.

[107] Doug Lea and Wolfram Gloger. malloc-2.7.2.c. Comments in source code.

[108] Doug Lea and Wolfram Gloger. A memory allocator. http://gee.cs.
oswego.edu/dl/html/malloc.html.

[109] Ruby B. Lee, David K. Karig, John P. McGregor, and Zhijie Shi. Enlisting
hardware architecture to thwart malicious code injection. In Proceedings
of the First International Conference on Security in Pervasive Computing,
volume 2802 of Lecture Notes in Computer Science, pages 237–252. Springer-
Verlag, 2003.

[110] Kyung-Suk Lhee and Steve J. Chapin. Type-assisted dynamic buffer overflow
detection. In Proceedings of the 11th USENIX Security Symposium, pages
81–90, San Francisco, California, U.S.A., August 2002. USENIX Association.

[111] Kyung-Suk Lhee and Steve J. Chapin. Buffer overflow and format string
overflow vulnerabilities. Software: Practice and Experience, 33(5):423–460,
April 2003.

[112] Cullen Lin, Mohan Rajagopalan, Scott Baker, Christian Collberg, Saumya
Debray, and John Hartman. Protecting against unexpected system calls. In
Proceedings of the 14th USENIX Security Symposium, Baltimore, Maryland,
U.S.A., August 2005. USENIX Association.

[113] David Litchfield. Defeating the stack based buffer overflow prevention mech-
anism of microsoft windows 2003 server. http://www.nextgenss.com/
papers/defeating-w2k3-stack-protection.pdf, September 2003.

[114] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC architec-
ture. In Proceedings of the 15th USENIX Security Symposium, Vancouver,
British Columbia, Canada, August 2006. USENIX Association.

[115] Matt Messier and John Viega. Safe C string library V1.0.2. http://www.
zork.org/safestr, November 2003.

[116] Microsoft. Vault: a programming language for reliable systems. http:
//research.microsoft.com/vault/.

128 BIBLIOGRAPHY

[117] Microsoft. Buffer overrun in RPC interface could allow code execution. http:
//www.microsoft.com/technet/security/bulletin/MS03-026.asp, July
2003.

[118] Todd C. Miller and Theo de Raadt. strlcpy and strlcat – consistent, safe
string copy and concatenation. In Proceedings of the 1999 USENIX Annual
Technical Conference (FREENIX Track), pages 175–178, Monterey, Califor-
nia, U.S.A., June 1999. USENIX Association.

[119] HD Moore. Cracking the iphone. http://blog.metasploit.com/2007/10/
cracking-iphone-part-1.html.

[120] National Institute of Standards and Technology. National vulnerability
database statistics. http://nvd.nist.gov/statistics.cfm.

[121] George Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe
retrofitting of legacy code. In Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 128–139, Portland, Oregon, U.S.A., January 2002. ACM.

[122] Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-Checking Entire Pro-
grams without Recompiling. In Informal Proceedings of the 2nd Workshop
on Semantics, Program Analysis, and Computing Environments for Memory
Management (SPACE 2004), Venice, Italy, January 2004.

[123] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software. In Proceedings of the 12th Annual Network and Distributed System
Security Symposium, San Diego, California, U.S.A., February 2005. Internet
Society.

[124] Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori Yonezawa. Fail-
safe ANSI-C compiler: An approach to making C programs secure: Progress
report. In Proceedings of International Symposium on Software Security
2002, pages 133–153, Tokyo, Japan, November 2002.

[125] Tavis Ormandy. Libtiff next rle decoder remote heap buffer overflow vulner-
ability. http://www.securityfocus.com/bid/19282, Aug 2006.

[126] Tavis Ormandy. Libtiff tifffetchshortpair remote buffer overflow vulnerabil-
ity. http://www.securityfocus.com/bid/19283, Aug 2006.

[127] Hilmi Özdog̃anog̃lu, T. N. Vijaykumar, Carla E. Brodley, Ankit Jalote, and
Benjamin A. Kuperman. SmashGuard: A hardware solution to prevent
security attacks on the function return address. Technical Report TR-ECE
03-13, Purdue University, February 2004.

BIBLIOGRAPHY 129

[128] Harish Patil and Charles N. Fischer. Low-Cost, Concurrent Checking of
Pointer and Array Accesses in C Programs. Software: Practice and Experi-
ence, 27(1):87–110, January 1997.

[129] Bruce Perens. Electric fence 2.0.5. http://perens.com/FreeSoftware/.

[130] Phantsmal Phantasmagoria. The malloc maleficarum. http://lists.grok.
org.uk/pipermail/full-disclosure/2005-October/037905.html.

[131] Frank Piessens. A taxonomy of causes of software vulnerabilities in internet
software. In Supplementary Proceedings of the 13th International Sympo-
sium on Software Reliability Engineering, pages 47–52, Annapolis, Mary-
land, U.S.A., November 2002. IEEE Computer Society, IEEE Press.

[132] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection
attacks through context-sensitive string evaluation. In Proceedings of the 8th
International Symposium on Recent Advances in Intrusion Detection, pages
124–145, Seattle, Washington, U.S.A., 2005. Springer.

[133] Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against
stack based buffer overflow attacks. In Proceedings of the USENIX An-
nual Technical Conference, pages 211–224, San Antonio, Texas, U.S.A., June
2003. USENIX Association.

[134] Vassilis Prevelakis and Diomidis Spinellis. Sandboxing applications. In
Proceedings of the 2001 USENIX Annual Technical Conference (FREENIX
Track), Boston, Massachusetts, U.S.A., June 2001. USENIX Association.

[135] Niels Provos. Improving host security with system call policies. In Proceed-
ings of the 12th USENIX Security Symposium, pages 257–272, Washington,
District of Columbia, U.S.A., August 2003. USENIX Association.

[136] Henry G. Rice. Classes of recursively enumerable sets and their decision
problems. Transactions of the American Mathematical Society, 74(2):358–
366, March 1953.

[137] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel Roy, Tudor Leu,
and William S. Beebee. Enhancing server availability and security through
failure-oblivious computing. In Proceedings 6th Symposium on Operating
Systems Design and Implementation, San Francisco, California, USA, De-
cember 2004. USENIX Association.

[138] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, and Tudor
Leu. A dynamic technique for eliminating buffer overflow vulnerabilities (and
other memory errors). In Proceedings of the 20th Annual Computer Security
Applications Conference, pages 82–90, Tuscon, Arizona,U.S.A., December
2004. IEEE Press.

130 BIBLIOGRAPHY

[139] Michael F. Ringenburg and Dan Grossman. Preventing format-string attacks
via automatic and efficient dynamic checking. In Proceedings of the 12th
ACM conference on Computer and communications security, pages 354–363,
Alexandria, VA, USA, 2005. ACM Press.

[140] rix. Smashing C++ VPTRs. Phrack, 56, 2000.

[141] Tim Robbins. Libformat. http://www.securityfocus.com/tools/1818,
October 2001.

[142] William Robertson, Christopher Kruegel, Darren Mutz, and Frederik Valeur.
Run-time detection of heap-based overflows. In Proceedings of the 17th Large
Installation Systems Administrators Conference, pages 51–60, San Diego,
California, U.S.A., October 2003. USENIX Association.

[143] Radu Rugina and Martin C. Rinard. Symbolic bounds analysis of point-
ers, array indices, and accessed memory regions. In Proceedings of the 2000
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 182–195, Vancouver, British Columbia, Canada, June 2000.
ACM.

[144] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow
detector. In Proceedings of the 11th Annual Network and Distributed System
Security Symposium, San Diego, California, U.S.A., February 2004. Internet
Society.

[145] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, September
1975.

[146] Fred B. Schneider. Least privilege and more. IEEE Security & Privacy,
1(5):55–59, September/October 2003.

[147] scut. Exploiting format string vulnerabilities. http://www.team-teso.net/
articles/formatstring/, 2001.

[148] Secure Software, Inc. RATS website. http://www.securesw.com/
download_rats.htm.

[149] R. Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast
automaton-based method for detecting anomalous program behaviors. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 144–
155, Oakland, California, U.S.A., May 2001. IEEE Computer Society, IEEE
Press.

BIBLIOGRAPHY 131

[150] Hovav Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In Proceedings of the 14th
ACM conference on Computer and communications security, pages 552–561,
Washington, District of Columbia, U.S.A., October 2007. ACM, ACM Press.

[151] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the Effectiveness of Address-Space Ran-
domization. In Proceedings of the 11th ACM conference on Computer and
communications security, pages 298–307, Washington, District of Columbia,
U.S.A., October 2004. ACM, ACM Press.

[152] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. De-
tecting format string vulnerabilities with type qualifiers. In Proceedings of
the 10th USENIX Security Symposium, pages 201–218, Washington, District
of Columbia, U.S.A., August 2001. USENIX Association.

[153] Zili Shao, Qingfeng Zhuge, Yi He, and Edwin H. M. Sha. Defending embed-
ded systems against buffer overflow via hardware/software. In Proceedings
of the 19th Annual Computer Security Applications Conference, Las Vegas,
Nevada, U.S.A., December 2003. IEEE Press.

[154] Axel Simon and Andy King. Analyzing string buffers in C. In H. Kirchner
and C. Ringeissen, editors, International Conference on Algebraic Method-
ology and Software Technology, volume 2422 of Lecture Notes in Computer
Science, pages 365–379. Springer, September 2002.

[155] Christopher Small. A tool for constructing safe extensible C++ systems. In
Proceedings of the Third USENIX Conference on Object-Oriented Technolo-
gies, pages 175–184, Portland, Oregon, U.S.A., June 1997. USENIX Associ-
ation.

[156] Alexey Smirnov and Tzi-cker Chiueh. Dira: Automatic detection, identifi-
cation and repair of control-hijacking attacks. In Proceedings of the Network
and Distributed System Security Symposium, San Diego, California, U.S.A.,
February 2005. Internet Society.

[157] Nathan P. Smith. Stack smashing vulnerabilities in the unix operating sys-
tem. http://reality.sgi.com/nate/machines/security/nate-buffer.
ps, 1997.

[158] Alexander Snarskii. Libparanoia. http://www.lexa.ru/snar/
libparanoia/.

[159] Alexander Snarskii. FreeBSD libc stack integrity patch.
ftp://ftp.lucky.net/pub/unix/local/libc-letter, February 1997.

132 BIBLIOGRAPHY

[160] Brian D. Snow. The future is not assured – but it should be. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 240–241, Oakland,
California, U.S.A., May 1999. IEEE Computer Society, IEEE Press.

[161] Solar Designer. Non-executable stack patch. http://www.openwall.com.

[162] Solar Designer. JPEG COM marker processing vulnerability
in netscape browsers. http://www.openwall.com/advisories/
OW-002-netscape-jpeg.txt, July 2000.

[163] Nora Sovarel, David Evans, and Nathanael Paul. Where’s the FEEB? the
effectiveness of instruction set randomization. In Proceedings of the 14th
USENIX Security Symposium, Baltimore, Maryland, U.S.A., August 2005.
Usenix.

[164] Eugene H. Spafford. Crisis and aftermath. Communications of the ACM,
32(6):678–687, June 1989.

[165] Joseph L. Steffen. Adding run-time checking to the portable C compiler.
Software: Practice and Experience, 22(4):305–316, April 1992. ISSN: 0038-
0644.

[166] W. Richard Stevens. Advanced Programming in the UNIX enironment.
Addison-Wesley, 1993.

[167] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley,
third edition edition, 1997.

[168] Andrew Suffield. Bounds checking for C and C++. Technical report, Impe-
rial College, 2003.

[169] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In Proceedings of
the 11th international conference on Architectural support for programming
languages and operating systems, pages 85–96, Boston, MA, USA, 2004.
ACM Press.

[170] The PaX Team. Documentation for the PaX project. http://pageexec.
virtualave.net/docs/.

[171] Ruud van der Pas. Memory hierarchy in cache-based systems. Technical
Report 817-0742-10, Sun Microsystems, Sant a Clara, California, U.S.A.,
November 2002.

[172] Vendicator. Documentation for stack shield. http://www.angelfire.com/
sk/stackshield.

BIBLIOGRAPHY 133

[173] Vendicator. Documentation for stackshield. http://www.angelfire.com/
sk/stackshield.

[174] John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4: A
static vulnerability scanner for C and C++ code. In 16th Annual Computer
Security Applications Conference, New Orleans, Louisiana, U.S.A., Decem-
ber 2000.

[175] John Viega and Gary McGraw. Building Secure Software. Addison-Wesley,
2002.

[176] Kevin Poulson vs. U.S Customs and Border Protection. Declaration of
shari suzuki in opposition to motion for summary judgement. http:
//wiredblogs.tripod.com/27BStroke6/suzukidecl.pdf, May 2006.

[177] David Wagner and Drew Dean. Intrusion detection via static analysis. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 156–
168, Oakland, California, U.S.A., May 2001. IEEE Computer Society, IEEE
Press.

[178] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A
first step towards automated detection of buffer overrun vulnerabilities. In
Proceedings of the 7th Networking and Distributed System Security Sympo-
sium 2000, pages 3–17, San Diego, California, U.S.A., February 2000.

[179] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. In Proceedings of the 14th ACM
Symposium on Operating System Principles, pages 203–216, Asheville, North
Carolina, U.S.A., December 1993. ACM.

[180] Yoav Weiss and Elena Gabriela Barrantes. Known/chosen key attacks
against software instruction set randomization. In 22nd Annual Computer
Security Applications Conference, Miami Beach, Florida, U.S.A., December
2006. IEEE Press.

[181] David A. Wheeler. Flawfinder website. http://www.dwheeler.com/
flawfinder/.

[182] David A. Wheeler. Secure Programming for Linux and Unix HOWTO, 3.010
edition, March 2003.

[183] Wikipedia. Project triangle. http://en.wikipedia.org/wiki/Project_
triangle.

[184] Wikipedia. Wikipedia entry for code injection. http://en.wikipedia.org/
wiki/Code_injection.

134 BIBLIOGRAPHY

[185] Wikipedia. Wikipedia entry for the sasser worm. http://en.wikipedia.
org/wiki/Sasser.

[186] John Wilander and Mariam Kamkar. A comparison of publicly available
tools for static intrusion prevention. In Proceedings of NORDSEC 2002: the
7th Nordic Workshop on Secure IT Systems, Karlstad, Sweden, November
2002.

[187] John Wilander and Mariam Kamkar. A comparison of publicly available
tools for dynamic buffer overflow prevention. In Proceedings of the 10th
Network and Distributed System Security Symposium, San Diego, California,
U.S.A., February 2003. Internet Society.

[188] Rafal Wojtczuk. Defeating Solar Designer’s Non-executable Stack
Patch. http://www.insecure.org/sploits/non-executable.stack.
problems.html, 1998.

[189] Yichen Xie, Andy Chou, and Dawson Engler. ARCHER: Using symbolic,
path-sensitive analysis to detect memory access errors. In Proceedings of the
9th European Software Engineering Conference, held jointly with 10th ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 327–336, Helsinki, Finland, 2003. ACM Press.

[190] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent run-
time randomization for security. In 22nd International Symposium on Reli-
able Distributed Systems (SRDS’03), pages 260–269, Florence, Italy, October
2003. IEEE Computer Society, IEEE Press.

[191] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, and K. Iyer Ravishankar. Ar-
chitecture support for defending against buffer overflow attacks. In Second
Workshop on Evaluating and Architecting System dependabilitY, pages 55–
62, San Jose, California, U.S.A., October 2002.

[192] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In Proceedings of the
15th USENIX Security Symposium, Vancouver, British Columbia, Canada,
August 2006. USENIX Association.

[193] Wei Xu, Daniel C. DuVarney, and R. Sekar. An Efficient and Backwards-
Compatible Transformation to Ensure Memory Safety of C Programs. In
Proceedings of the 12th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 117–126, Newport Beach, California,
U.S.A., October-November 2004. ACM, ACM Press.

[194] Suan Hsi Yong and Susan Horwitz. Protecting C programs from attacks
via invalid pointer dereferences. In Proceedings of the 9th European software

BIBLIOGRAPHY 135

engineering conference held jointly with 10th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 307–316. ACM,
ACM Press, September 2003.

[195] Yves Younan. An overview of common programming security vulnerabilities
and possible solutions. Master’s thesis, Vrije Universiteit Brussel, 2003.

[196] Yves Younan. Dnmalloc 1.0. http://www.fort-knox.org, 2005.

[197] Yves Younan, Wouter Joosen, and Frank Piessens. Code injection in C and
C++: a survey of vulnerabilities and countermeasures. ACM Computing
Surveys. Submitted.

[198] Yves Younan, Wouter Joosen, and Frank Piessens. Code injection in C
and C++ : A survey of vulnerabilities and countermeasures. Technical
Report CW386, Departement Computerwetenschappen, Katholieke Univer-
siteit Leuven, July 2004.

[199] Yves Younan, Wouter Joosen, and Frank Piessens. A methodology for de-
signing countermeasures against current and future code injection attacks. In
Proceedings of the Third IEEE International Information Assurance Work-
shop 2005 (IWIA2005), College Park, Maryland, U.S.A., March 2005. IEEE,
IEEE Press.

[200] Yves Younan, Wouter Joosen, and Frank Piessens. Efficient protection
against heap-based buffer overflows without resorting to magic. In Proceed-
ings of the International Conference on Information and Communication
Security (ICICS 2006), Raleigh, North Carolina, U.S.A., December 2006.

[201] Yves Younan, Wouter Joosen, and Frank Piessens. Extended protection
against stack smashing attacks without performance loss. In Proceedings
of the Twenty-Second Annual Computer Security Applications Conference,
Miami, Florida, U.S.A., December 2006. IEEE Press.

[202] Yves Younan, Wouter Joosen, and Frank Piessens. Protecting global and
static variables from buffer overflow attacks without overhead. Technical
Report CW463, Departement Computerwetenschappen, Katholieke Univer-
siteit Leuven, October 2006.

[203] Yves Younan, Wouter Joosen, Frank Piessens, and Hans Van den Eynden.
Security of memory allocators for C and C++. Technical Report CW419, De-
partement Computerwetenschappen, Katholieke Universiteit Leuven, July
2005.

[204] Zen-parse. Wu-ftpd 2.6.1 exploit. http://www.derkeiler.com/
Mailing-Lists/securityfocus/vuln-dev/2001-12/0160.html.

136 BIBLIOGRAPHY

[205] Ge Zhu and Akhilesh Tyagi. Protection against indirect overflow attacks on
pointers. In Proceedings of the 2nd IEEE International Information Assur-
ance Workshop (IWIA), pages 97–106, Charlotte, North Carolina, U.S.A.,
April 2004. IEEE Press.

[206] Cliff Changchun Zou, Weibo Gong, and Don Towsley. Code red worm prop-
agation modeling and analysis. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, pages 138–147, Washington,
District of Columbia, U.S.A., November 2002. ACM.

List of Publications

Articles in international reviewed journals

• Y. Younan, W. Joosen and F. Piessens, Code Injection in C and C++: A
Survey of Vulnerabilities and Countermeasures. ACM Computing Surveys.
Submitted, January 2005. Conditionally accepted (minor revision), March
2007, Revised, May 2007.

• Y. Younan, W. Joosen, F. Piessens and H. Van den Eynden, Security of
memory allocators for C and C++, Journal of Computer Security. Submit-
ted, January 2007, Revised March 2008.

Contributions at international conferences, published in pro-
ceedings

• Y. Younan, D. Pozza, F. Piessens, and W. Joosen, Extended protection
against stack smashing attacks without performance loss, Twenty-Second
Annual Computer Security Applications Conference, pp. 429-438, 2006

• Y. Younan, W. Joosen, and F. Piessens, Efficient protection against heap-
based buffer overflows without resorting to magic, Information and Commu-
nications Security: 8th International Conference (Ning, P. and Qing, S. and
Li, N., eds.), vol 4307, Lecture Notes in Computer Science, pp. 379-398,
2006

• Y. Younan, W. Joosen, and F. Piessens, Applying machinemodel-aided coun-
termeasure design to improve memory allocator security, 22nd Chaos Com-
munication Congress Proceedings (-, ed.), pp. 249-254, 2005

• Y. Younan, W. Joosen, and F. Piessens, A methodology for designing coun-
termeasures against current and future code injection attacks, Proceedings
of the Third IEEE International Information Assurance Workshop (Cole, J.
and Wolthusen, S., eds.), pp. 3-20, 2005

137

138 List of Publications

Contributions at international conferences, not published or
only as abstract

• Y. Younan, W. Joosen, and F. Piessens, Applying machinemodel-aided coun-
termeasure design to improve security, 5th System Administration and Net-
work Engineering Conference, SANE, Delft, The Netherlands, May 15-19,
2006,

• Y. Younan, W. Joosen, and F. Piessens, Applying machinemodel-aided coun-
termeasure design to improve security, 15th USENIX Security Symposium,
Vancouver, Canada, August 1-4, 2006, Y. Younan, A methodological ap-
proach to designing protection against code injection attacks, 1st EuroSys
Doctoral Workshop, Brighton, United Kingdom, October 23, 2005,

Contributions at other conferences, not published or only as
abstract

• Y. Younan, Security of memory allocators for C and C++, What The Hack,
WTH, Liempde, The Netherlands, July 28-31, 2005, unpublished

• Y. Younan, Security of memory allocators for C and C++, ph-neutral,
Berlin, Germany, May 27-29, 2005, unpublished

Technical reports

• Y. Younan, F. Piessens, and W. Joosen, Protecting global and static vari-
ables from buffer overflow attacks without overhead, K.U.Leuven, Depart-
ment of Computer Science, Report CW 463, October, 2006

• Y. Younan, W. Joosen, F. Piessens, and H. Van den Eynden, Security
of memory allocators for C and C++, Department of Computer Science,
K.U.Leuven, Report CW 419, July, 2005

• Y. Younan, W. Joosen, and F. Piessens, Code injection in C and C++: a
survey of vulnerabilities and countermeasures, K.U.Leuven, Department of
Computer Science, Report CW 386, July, 2004

Biography

Yves Younan was born on January 16th, 1979 in Lachine, Canada. He received a
Licentiate in Computer Science (the Belgian equivalent of a Master of Science in
Computer Science) from the Vrije Universiteit Brussel. He graduated magna cum
laude in September 2003 with the thesis ”An overview of common programming
security vulnerabilities and possible solutions” which was promoted by Prof. dr.
Dirk Vermeir. In February 2004, he joined the DistriNet research group of the
Department of Computer Science of the Katholieke Universiteit Leuven as a PhD
student. During the course of his PhD studies, he was a visiting scholar from
July 2007 until January 2008 at the Secure Systems Lab of the Department of
Computer Science at Stony Brook University, where he collaborated with Prof.
dr. R. Sekar.

139

140 Biography

Dutch Summary

141

142 Dutch Summary

Efficiënte tegenmaatregelen voor

softwarekwetsbaarheden veroorzaakt door

geheugenbeheerfouten

Samenvatting

Ondanks vele jaren van onderzoek en grote investeringen door bedrijven, is de
ontwikkeling van veilige software nog steeds een groot probleem. Dit blijkt uit
de gestage toename van de kwetsbaarheden die jaarlijks zijn gemeld. Snelle ver-
spreidende wormen zoals de worm Code Red, die naar schatting een wereldwijd
economisch verlies van $2,62 miljard heeft veroorzaakt, zullen vaak fouten in pro-
gramma’s uitbuiten om zich snel te verspreiden.

Kwetsbaarheden die kunnen uitgebuit worden door aanvallers voor het uitvoe-
ren van code injectie aanvallen zijn een belangrijke vorm van implementatiefouten.
De worm Code Red buit een bufferoverloop uit om willekeurige code te kunnen
uitvoeren op de kwetsbare machine, waardoor hij zichzelf kan verspreiden door
zich te kopiëren naar machines die hij besmet. Het wijdverspreide gebruik van
C-achtige talen waar dergelijke kwetsbaarheden een belangrijk probleem zijn heeft
het probleem verergerd.

In dit proefschrift onderzoeken we een aantal kwetsbaarheden in C-achtige
talen, die door aanvallers kunnen worden uitgebuit voor het uitvoeren van code
injectie aanvallen en bespreken we tegenmaatregelen die bescherming bieden tegen
dit soort aanvallen. Dit proefschrift bestaat uit drie belangrijke onderdelen: het
begint met de presentatie van een uitgebreide inventarisatie van de huidig bekende
kwetsbaarheden en tegenmaatregelen, dit wordt gevolgd door een discussie van
twee nieuwe tegenmaatregelen die gericht zijn op een betere bescherming tegen
aanvallen op verschillende kwetsbaarheden terwijl die slechts een te verwaarlozen
invloed hebben op performantie.

De inventarisatie biedt een uitgebreid en gestructureerd overzicht van kwets-
baarheden en tegenmaatregelen voor code injectie in C-achtige talen. Diverse
tegenmaatregelen maken verschillende afwegingen in termen van performantie, ef-
fectiviteit, geheugenverbruik, compatibiliteit, enz. Dit maakt het moeilijk te be-
oordelen en vergelijken van de geschiktheid van de voorgestelde tegenmaatregelen
in een gegeven context. Deze inventaristatie is een classificatie en evaluatie kader,
op basis waarvan de voordelen en nadelen van tegenmaatregelen kunnen worden
beoordeeld. Op basis van de opmerkingen en de conclusies die werden getrokken

i

uit de inventarisatie, zijn twee tegenmaatregelen ontworpen, gëımplementeerd en
geëvalueerd.

De eerste tegenmaatregel die we beschrijven is een efficiënte tegenmaatregel te-
gen stapelvermorzelingsaanvallen. Onze tegenmaatregel maakt geen gebruik van
geheime waarden (zoals kanaries) en beschermt tegen aanvallen waartegen gelijk-
aardige tegenmaatregelen niet beschermen. Onze techniek splitst de standaard
stapel in meerdere stapels. De verdeling van de soorten gegevens aan één van de
stacks is gebaseerd op de kans dat een specifiek data-element ofwel een doelwit of-
wel een bron van aanvallen is. We hebben deze tegenmaatregel gëımplementeerd in
een C-compiler voor Linux. De evaluatie toont aan dat de impact op performantie
door het gebruik van onze tegenmaatregel verwaarloosbaar is.

De tweede tegenmaatregel beschermt tegen aanvallen op hoop-gebaseerde buf-
feroverlopen en zwevende wijzers. Het wijzigen van de beheersinformatie die ge-
bruikt wordt door de dynamische geheugenbeheerder is vaak een bron van een
aanval op deze kwetsbaarheden. Alle bestaande tegenmaatregelen met lage im-
pact op performantie maken gebruik van magische waarden, kanaries of andere
probabilistische waarden die geheim moeten blijven. In het geval van magische
waarden wordt een geheime waarde geplaatst vóór een cruciale geheugenlocatie
en door toezicht te houden of de waarde is veranderd, kunnen overlopen opge-
spoord worden. Als aanvallers willekeurige geheugenlocaties kunnen lezen, dan
kunnen ze deze tegenmaatregel omzeilen. Deze tegenmaatregel presenteert een
aanpak die, wanneer toegepast op een memory allocator, zal beschermen tegen
deze aanvalsvector zonder toevlucht te nemen tot magie. We hebben deze aanpak
gëımplementeerd door het wijzigen van een bestaande algemeen gebruikte geheu-
gebeheerder. Uit testen blijkt dat deze tegenmaatregel een te verwaarlozen, soms
zelfs positieve, invloed op performantie heeft.

ii

1 Inleiding

Sinds de komst van multi-gebruiker systemen, is veiligheid een belangrijk aan-
dachtspunt geworden. In de vroege dagen van de multi-gebruiker systemen, poog-
den gebruikers om extra tijd op, of de toegang tot, gedeelde bronnen te verkrijgen.
Dit was aanleiding tot een heel domein van onderzoek naar computerbeveiliging
dat een integraal onderdeel is geworden van het gebied van de computerweten-
schappen. De komst van massaal genetwerkte systemen zoals het Internet heeft de
behoefte aan veiligheid een hernieuwde urgentie gegeven. Onderzoekers zijn erg
succesvol in het ontwerpen van veiligheidsmechanismen die essentiële bescherming
bieden aan computersystemen. Het domein van de toegangscontrole, bijvoorbeeld,
heeft uitgebreide modellen voor het verlenen van toegangscontrole uitgewerkt, af-
hankelijk van de specifieke toegangscontrole behoeften van een entiteit. Onderzoek
naar cryptografie heeft ook uitgebreide en bewijsbaar veilige cryptografische algo-
ritmes ontwikkeld die ervoor zorgen dat belangrijke gegevens onleesbaar zolang de
sleutel veilig is.

Hoewel zulke belangrijke beveiligingsproblemen zijn aangepakt en nog steeds
worden verbeterd, blijft er een zeer belangrijk probleem met de implemenatie van
de programma’s. Vaak zullen deze implementatiefouten de veiligheid die door toe-
gangscontrole en cryptografische protocols aangeboden worden ongedaan maken.
In veel gevallen, zullen fouten bij de uitvoering van een cryptografisch protocol
het algoritme aanzienlijk verzwakken of zullen fouten in de implementatie van
toegangscontrolemechanismen gebruikers de mogelijkheid geven om hun privileges
op te waarderen.

Een belangrijke vorm van implementatiefouten die leiden tot beveiligings-
problemen zijn ook het gevolg van een gebrek aan invoercontrole. Dit ge-
brek aan invoercontrole kan resulteren in een probleem waarbij gegevens worden
gëınterpreteerd als computer code. Dit kan zowel voor gëınterpreteerde talen als
voor gecompileerde talen gebeuren. Deze kwetsbaarheden zijn echter zeer erg voor
programma’s die zijn geschreven in C-achtige talen, omdat deze programma’s vaak
gebruikt worden voor netwerk diensten, besturingssystemen en stuurprogramma’s.
In de C-achtige talen, kan onvoldoende invoerscontrole leiden tot een bufferover-
loop, waar een kwetsbaar programma voorbij het einde van een object, schrijft,
waardoor het aangrenzende objecten zal overschrijven.

Deze situatie is verbeterd met de komst van veilige talen, zoals Java en C#,
waarmee programmeurs minder directe toegang tot het geheugen hebben en dus
voorkomen kan worden dat bepaalde bugs voorkomen. Geheugensanerende talen,
laten programmeurs niet toe om handmatig geheugen vrij te geven, wat het pro-
bleem van zwevende wijzers verwijdert. Veilige talen zullen meestal niet toestaan
dat de programmeur wijzers direct manipuleert en zullen ook niet toestaan dat
er rekenkundige operaties op wijzers gebeuren. wat een belangrijke oorzaak van
bufferoverlopen elimineert. Toegang tot reeksen via een index worden vaak tijdens
looptijd gecontroleerd door de grootte van de reeks bij te houden en ervoor te

iii

zorgen dat de toegang binnen de grenzen van deze reeks blijft.
Het is echter niet altijd mogelijk om gebruik te maken van deze veilige talen. Er

is een aanzienlijke hoeveelheid van bestaande code die geschreven is in C-achtige
talen die hedentendage nog in gebruik is. Bovendien zijn er veel programmeurs
die expertise hebben in deze talen en ze nog steeds gebruiken voor het ontwikkelen
van nieuwe producten. In sommige gevallen is het gebruik van een C-achtige
taal een noodzaak: voor specifieke systeemsoftware, hebben programmeurs directe
toegang tot het geheugen nodig, wat door veilige talen belemmerd zou worden.
Sommige apparaten hebben ook zeer specifieke beperkingen met betrekking tot
het geheugenverbruik en performantie, waardoor het gebruik van een C-achtige
taal een aantrekkelijke keuze wordt.

Kwetsbaarheden die het gevolg zijn van fouten in het geheugenbeheer in C-
achtige talen, zijn een belangrijke bedreiging voor de veiligheid van huidige com-
putersystemen. De meeste van deze kwetsbaarheden vloeien voort uit het ver-
keerd gebruik van reeksen, wat resulteert in bufferoverloopkwetsbaarheden. Het
misbruik van een dergelijke kwetsbaarheid, kan een aanvaller toelaten om geheu-
genlocaties, waar de uivoeringsomgeving op berust voor de correcte uitvoering van
programma’s, te overschrijven.

Dit probleem doet zich voor omdat abstracties die bestaan in een hogere taal
niet bestaan in een lager niveau representatie van het programma [Erl07]. Wanneer
een C-programma gecompileerd wordt, zal de compiler een aantal mechanismen
invoeren die het uitvoeren van programma’s vergemakkelijken. Het zal hiervoor
deze hoger-niveau abstracties implementeren. Deze mechanismen zijn niet aan-
wezig in de C-taal en de programmeur heeft hier geen rechtstreeks toegang toe.
Omdat C een onveilige taal is, is het echter mogelijk voor een programma om
toegang te krijgen tot één van deze mechanismen. Hetzij rechtstreeks door mani-
pulatie van wijzers of per ongeluk door een kwetsbaarheid. Wanneer een dergelijke
kwetsbaarheid optreedt, kan een aanvaller hier gebruik van maken om controle te
krijgen over de uitvoeringsstroom van een programma. Een voorbeeld van een
dergelijk mechanisme is het terugkeeradres: dit adres wordt gebruikt om functies
te kunnen uitvoeren. Wanneer een functie wordt uitgevoerd, wordt het adres van
de volgende instructie na de functie-oproep geplaatst op de stapel. Zodra de func-
tie klaar is met uitvoeren, zal de uitvoering van het programma worden hervat op
het terugkeeradres. Dit mechanisme maakt het mogelijk om programma’s uit te
voeren met geneste en recursieve functie-oproepen. Een aanvaller kan dit mecha-
nisme misbruiken door gebruik te maken van een kwetsbaarheid die toelaat om
het het terugkeeradres naar een andere locatie te doen wijzen. Wanneer de functie
eindigt, zal de controle naar deze nieuwe locatie worden overgedragen en zullen de
gegevens die op deze locatie zijn opgeslagen als machinecode worden uitgevoerd.
Als aanvallers dus een invoer aan het programma kunnen geven dat zal worden
opgeslagen in het geheugen van het programma. Als ze bovendien in staat zijn om
door middel van een kwetsbaarheid het terugkeeradres te wijzigen, dan zijn ze in

iv

staat om willekeurige code uit te voeren met het privilegeniveau van het proces .
Dit soort kwetsbaarheid werd uitgebuit door veel van de meest verwoesten-

de wormen in de recente geschiedenis: de worm Code Red, die heeft geleid tot
een wereldwijde economische verlies geraamd op $2,62 miljard [Eco02]; de Sasser-
worm, die er voor heeft gezorgd dat Delta Airlines verschillende transatlantische
vluchten moest annuleren en verschillende Röntgenmachines van een Zweeds zie-
kenhuis tijdelijk onbruikbaar maakte [Wikb]; en de Zotob-worm, die waarschijnlijk
een nationale crash van computers van het US-VISIT programma van Amerikaan-
se Departement van Vaderlandsveiligheid heeft veroorzaakt op 18 augustus 2005,
wat zorgde voor lange wachtrijen van reizigers op verschillende grote luchthavens
[vUCP06].

Volgens het Nationale Kwestbaarheids Database [Nat] van het Amerikaanse
Nationale Instituut voor Wetenschap en Technologie, werden er 584 bufferover-
loopkwetsbaarheden gemeld in 2005, wat 12 % uitmaakt van de 4852 kwetsbaar-
heden die gemeld werden dat jaar. In 2004 werden er 341 (14 % van 2352) buf-
feroverloopkwestbaarheden gemeld. Dit betekent dat, alhoewel het totaal aantal
van de gerapporteerde kwetsbaarheden bijna verdubbeld is in 2005, bufferover-
loopkwetsbaarheden nog steeds een belangrijke aanvalsbron zijn. 418 van de 584
bufferoverlopen in 2005 had ook een hoog niveau van ernst, wat 21 % van de 1923
kwetsbaarheden met een hoog niveau van ernst is. Zij maken ook 42 % uit van de
kwetsbaarheden die een aanvaller beheerdertoegang kunnen geven tot een systeem.

In jaarverslag voor 2007 van Cisco [Inc] worden statistieken over kwetsbaarhe-
den en de oorzaken ervan gepresenteerd op basis van de meldingen van de Cisco
Security IntelliShield Alert Manager Dienst 1. In de grafiek in Figuur 1 worden
de kwetsbaarheden en hun effecten vermengd, waardoor het moeilijker is om er
nuttige gegevens uit te halen. Het toont echter wel duidelijk aan dat kwetsbaar-
heden die het mogelijk maken om willekeurige code uit te voeren als ze uitgebuit
worden, de tweede grootste fractie van kwetsbaarheden is die gerapporteerd zijn
door de IntelliShield Alert Dienst in 2007. Het geeft ook een duidelijke indicatie
dat bufferoverloopkwetsbaarheden nog steeds een zeer belangrijke kwetsbaarheid
zijn, deze zijn de grootste groep van kwetsbaarheden die gerapporteerd zijn door
de IntelliShield Alert Service.

In het verslag wordt ook een vergelijking gemaakt van de trends met kwets-
baarheden in 2006 (zie figuur 2). Hoewel er minder kwetsbaarheden werden gemeld
die hebben geresulteerd in de uitvoering van code, werden meer bufferoverlopen
gemeld. Dit zou kunnen betekenen dat er meer tegenmaatregelen worden toege-
past, die bufferoverlopen in dienstweigeringsaanvallen omzet, in plaats van in code
injectie aanvallen. Hoewel dit een positieve trend toont die de positieve resultaten
van het onderzoek in dit gebied aantoont, is het ook verontrustend dat de relatieve
omvang van bufferoverlopen is toegenomen en een dergelijk groot deel uitmaken

1Dit is een dienst die informatie verzamelt over huidige kwetsbaarheden die het distribueert
naar klanten die zich abonneren op de service.

v

Cumulative Annual Alert Totals

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12

A
le
rt
s 2007

2006
2005

Month

Vulnerability and Threat Categories
JAN-OCT 2007

0 100 200 300 400

Symbolic Link
Exploit System Trust
Virus
Misconfiguration
Trojan Horse
Spoofing
Backdoor Trojan
Directory Traversal
Multiple Vulnerabilities
Format String
Worm
Unauthorized Access
Security Solution Weakness
Software Fault (Vul)
Cross-Site Scripting
Information Disclosure
Privilege Escalation
Arbitrary Code Execution
Denial of Service
Buffer Overflow

Figuur 1: Top 20 Threats and Vulnerabilities, January through October 2007
(source: [Inc], c©Cisco Systems Inc.)

Threat Category Alert Count % Change from 2006

Arbitrary Code Execution 232 –24%

Backdoor Trojan 15 –72%

Buffer Overflow 395 23%

Directory Traversal 17 –52%

Misconfiguration 8 –57%

Software Fault (Vul) 98 53%

Symbolic Link 5 –64%

Worm 37 –28%

Annual Urgency Scores

0

10

20

30

40

50

60

Urgency ≥3 Urgency ≥4 Urgency ≥5

2005
2006
2007

Figuur 2: Shifts in Threats and Vulnerabilities Reported (source: [Inc], c©Cisco
Systems Inc.)

vi

van de gerapporteerde kwetsbaarheden.

2 Kwetsbaarheden

In dit proefschrift concentreren wij ons op enkele belangrijke kwetsbaarheden die
gebruikt kunnen worden door een aanvaller om code-uitvoering te bekomen in
programma’s geschreven in C-achtige talen:

Buffer overlopen treden op wanneer een programma niet verzekert dat een
schrijfoperatie niet zal schrijven voorbij het einde van het geheugen dat is
toegewezen aan een object. Wanneer dit gebeurt, zal aanliggende informatie
overschreven worden. Deze bufferoverloopkwetsbaarheden zijn vooral aan-
wezig in string operaties op reeksen van tekens die zijn opgeslagen op de
stapel. Meestal zal een aanvaller deze exploiteren door een terugkeeradres
op de stapel te overschrijven om zo code uitvoering te bekomen. Dit soort
van kwetsbaarheid kan echter ook bestaan in andere regio’s van het geheu-
gen: op de hoop en in de data / bbs2 sectie.

Zwevende wijzers treden op wanneer wijzers bestaan naar geheugen dat is vrij-
gegeven. Zo een wijzer kan verwijzen naar een geheugenlocatie die vrijgege-
ven is, hetzij expliciet door de programmeur (bijvoorbeeld door de functie
vrijgeven op te roepen) of door code die wordt gegenereerd door de compiler
(bijvoorbeeld een epiloogfunctie, waar het stapelkader van de functie wordt
verwijderd van de stapel). Het bestaan van dergelijke zwevende wijzers is
echter geen veiligheidsprobleem zolang deze wijzers niet worden gebruikt.
Als een programma gebruik maakt van één van deze wijzers, wordt geheu-
gen aangesproken dat niet meer bevat wat de programmeur verwacht. Dit
kan een veiligheidsprobleem veroorzaken omdat het geheugen kan zijn herge-
bruikt. Als een programma via een zwevende wijzer schrijft naar geheugen
dat hergebruikt is zal het de informatie die er is opgeslagen overschrijven,
denkende dat het een bepaald object is. Een ander deel van het programma
zou dit geheugen tegelijkertijd ook als een ander object kunnen gebruiken,
waardoor prolbemen kunnen veroorzaakt worden.

Formaat string kwetsbaarheden zijn kwetsbaarheden die optreden wanneer
formaatfuncties verkeerd gebruikt worden door een programmeur. Formaat-
functies zijn functies die een variabel aantal argumenten samen met een for-
maat string als argument verwachten.Deze formaat string zal aangeven hoe
de formaatfunctie zijn weergave zal formateren. De formaat string is een te-
kenreeks die letterlijk gekopieerd wordt naar de weergave stroom tenzij een %
karakter wordt tegengekomen. Dit karakter wordt gevolgd door een formaat

2blok begonnen door symbool

vii

Efficient Automatic

Complete

Figuur 3: Countermeasure triangle

specificeerder die de weergave zal manipuleren. Wanneer een formaat speci-
ficeerder een argument vereist, verwacht de formaat functie dit argumentt e
vinden op de stapel (bijvoorbeeld de volgende oproep: printf(”%d”d)), hier
verwacht printf de integer d als tweede argument voor de printf oproep op de
te stapel te vinden). Een formaat string kwetsbaarheid treed op als een aan-
valler controle heeft over de formaat string (bijvoorbeeld printf(s), waarbij
s door de gebruiker geleverd werd). De aanvaller is nu in staat te controleren
wat de functie van de stapel en kan er voor zorgen dat het programma naar
willekeurige locaties in het geheugen schrijft.

Getalfouten [ble02, You03] zijn niet uitbuitbaar op zichzelf, maar de uitbuiting
van dit soort fouten kan leiden tot een situatie waarin het programma kwets-
baar wordt voor één van de eerder beschreven kwetsbaarheden. Twee soorten
integer fouten die kunnen leiden tot de exploiteerbaarheid van kwetsbaarhe-
den bestaan: overlopen van een getal en tekenfouten.

Veel tegenmaatregelen zijn ontworpen om te beschermen tegen uitbuiting van
deze kwetsbaarheden. Deze tegenmaatregelen worden meestal beoordeeld aan de
hand van drie belangrijke criteria: volledigheid, efficiëntie en het niveau van au-
tomatisering. In analogie met het project driehoek in het technische ontwerp “
Goed, Goedkoop, Betrouwbare: Kies er twee ”[Wika], de meeste tegenmaatregelen
zullen alleen voldoen aan twee van de drie criteria.

Volledigheid bepaalt hoe volledig de bescherming is tegen de kwetsbaarheid die
wordt geaddresseerd.

Efficiëntie bepaalt het effect dat de tegenmaatregel heeft op de prestatie en het
geheugengebruik.

viii

Automatisch omvat meerdere facetten van de tegenmaatregelen die menselijke
tussenkomst zouden kunnen vereisen. Hoe minder handmatige tussenkomst
vereist is, hoe meer automatische de tegenmaatregel zal worden. Als de
tegenmaatregel niet compatibel is met de bestaande C-code, dan zal hand-
matige interventie noodzakelijk zijn. Tegenmaatregelen die de interpretatie
en de verwerking van de resultaten vereisen (zoals statische en dynamische
analyzers), zullen ook enige manuele interventie vereisen.

Elke tegenmaatregel is een compromis tussen efficiëntie, volledigheid en au-
tomatisering. Vaak zal aan twee van deze eigenschappen worden voldaan, maar
moeten compromissen worden gemaakt in het andere veld:

· Een tegenmaatregel die efficiënt en volledig is zal handmatige interventie
nodig hebben om toegepast te worden op een programma.

· Een tegenmaatregel die volledig is en automatisch kan worden toegepast, zal
inefficiënt zijn.

· Een tegenmaatregel die efficiënt is en automatisch kan worden toegepast, zal
onvolledig zijn.

Dit is echter de ideale situatie bij tegenmaatregelen: soms is het mogelijk
om verbetering te bekomen in één gebied, terwijl er slechts minimale of geen
verlies wordt gemaakt in een ander. De tegenmaatregelen in dit proefschrift zijn
van die aard: ze zijn een aanzienlijke verbetering van de volledigheid van een
tegenmaatregel, terwijl er slechts weinig (of helemaal geen) verlies is op het gebied
van efficiëntie.

3 Tegenmaatregel voor stapel-gebaseerde buffer-
overlopen

Een belangrijke bijdrage van dit proefschrift is een tegenmaatregel voor stapel-
gebaseerde bufferoverlopen. In deze tegenmaatregel worden controle stroom ge-
gevens (gegevens die gebruikt worden voor het regelen van de controle stroom
van het programma, zoals een terugkeeradres) gescheiden van reguliere gegevens
op de stapel. Deze scheiding wordt bereikt door het toewijzen van twee waarden
voor elk type van de gegevens: doelwaarde (hoe waardevol is dit soort gegevens
voor een aanvaller tijdens een poging om een code injection aanval uit te voeren)
en bronwaarde (hoe groot is de kans is dat een aanvaller dit type van gegevens
kan misbruiken voor het uitvoeren van een aanval). Bijvoorbeeld, het terugkeer-
adres (en andere opgeslagen registers) heeft een hoge doelwaarde, aangezien een
aanvaller die er controle over heeft deze kan gebruiken voor het uitvoeren van

ix

code injectie. Het terugkeeradres heeft ook een lage bronwaarde; aanvallers zul-
len er nooit directe controle over hebben, ze hebben een aanval nodig om het te
wijzigen. Een reeks van karakters heeft een lage doelwaarde gezien aanvallers in
het algemeen geen code injectie verkrijgen bij het overschrijven van een dergelijke
reeks. Een reeks van karakters heeft wel een hoge bronwaarde: deze reeksen zijn
in het algemeen degene die kwetsbaar zijn voor bufferoverlopen. Afhankelijk van
het soort gegevens kan de stapel dan worden opgesplitst in meerdere stapels die
van elkaar gescheiden zijn. Als gevolg kan een bufferoverloop in een reeks van
karakters alleen andere reeksen van characters overschrijven, maar geen terugkeer-
adressen. Deze tegenmaatregelen is zeer efficiënt, automatisch en completer dan
de tegenmaatregelen die zich richten op deze eerste twee eigenschappen.

4 Tegenmaatregel voor hoop-gebaseerde buffer-
overlopen

Een ander belangrijk tegenmaatregel die is ontworpen en gëımplementeerd maakt
het moeilijker voor een aanvaller om een code injection aanval uit te overen als er
een hoop-gebaseerde bufferoverloop bestaat. Wanneer een hoop-gebaseerde buf-
feroverloop wordt uitgebuit, zal een aanvaller de geheugenbeheersinformatie wijzi-
gen om op een betrouwbare manier code injectie te verkrijgen. De tegenmaatregel
voorkomt dit soort aanvallen door het scheiden van geheugenbeheersinformatie van
de rest van het dynamisch toegewezen geheugen. De tegenmaatregel is ook zeer
efficiënt, automatisch en completer dan andere tegenmaatregelen die zich richten
op deze eerste twee eigenschappen.

5 Conclusie

5.1 Toekomstig werk

De auteur van dit proefschrift is momenteel betrokken bij het ontwerpen en imple-
menteren van een aantal nieuwe tegenmaatregelen die betere bescherming kunnen
bieden tegen de kwetsbaarheden die besproken werden in dit proefschrift. We
bespreken hier twee tegenmaatregelen, terwijl een derde besproken wordt in de
volgende sectie.

5.1.1 Een grenscontroleur voor rekenkundige operaties op wijzers

Tijdens een onderzoeksverblijf aan de Universiteit van Stony Brook, heeft de au-
teur een derde tegenmaatregel ontworpen dat grenscontroles doet voor C. Dit
wordt bereikt door de invoering van extra controles bij rekenkundige operaties
op wijzers. Huidige grenscontroleurs voeren meestal hun controles uit wanneer

x

een wijzer gebruikt wordt. Door deze controle op berekeningstijd in plaats van
bij gebruik te doen zou een verhoging van performantie bereikt moeten worden.
Wanneer een object word gealloceerd zal het gehele geheugen van dat object ge-
markeerd worden met een unieke waarde, een etiket genaamd. Wanneer een reken-
kundig operatie wordt uitgevoerd op een wijzer die wijst naar een object, wordt
het etiket van het object waar de wijzer naar wijst vergeleken met het etiket van
het resultaat van de rekenkundige operatie. Als ze niet gelijk zijn, dan is een wijzer
gemaakt, dat buiten de grenzen van het object wijst. Dit werk is nog aan de gang,
maar we verwachten dat de tegenmaatregel volledig zal zijn en verenigbaar met
de bestaande code. Onze focus is vooral op het maken van grenzencontroleurs die
efficiënter en schaalbaar zijn, zodat ze kunnen worden gebruikt in productiesyste-
men.

5.1.2 Een tegenmaatregel voor zwevende wijzers

Deze tegenmaatregel is gebaseerd op de ervaring die werd opgedaan bij het ont-
wikkelen van de grenzencontrolleur, maar concentreert zich op zwevende wijzers.
Bestaande tegenmaatregelen voor zwevende wijzers [DA06] lijden aan een hoge
performantie-impact omdat veel controles moeten worden uitgevoerd om te voor-
komen dat zwevende wijzers gebruikt worden. De tegenmaatregel die zal worden
ontwikkeld, zal naar verwachting efficiënter zijn door een associatie van het object
naar de wijzer bij te houden. Wanneer een wijzer wordt ingesteld om te verwijzen
naar een bepaald object, zal ook een associatie van het object naar de wijzer wordt
bijgehouden. Wanneer een object vrijgegeven wordt, zal de associatie gebruikt
worden om alle wijzers die verwijzen naar dit object ongeldig te maken. Wanneer
het programma een dergelijke wijzer probeert te gebruiken zal dit een crash tot
gevolg hebben, wat voorkomt dat de wijzer op een ongeldige wijze gebruikt wordt.

5.2 Toekomstig onderzoeksmogelijkheden en toepassings-
domeinen

In deze rubriek bespreken we onderzoeksmogelijkheden en uitdagingen van een
aantal nieuwe en recente technologieën met betrekking tot het ontwerp van nieuwe
tegenmaatregelen. We bespreken ook nieuwe toepassingsgebieden voor tegenmaat-
regelen voor code injectie aanvallen.

5.2.1 Ingebedde systemen en mobiele apparaten

Nieuwe technologieën zoals ingebedde systemen, sensornetwerken en mobiele ap-
paraten zorgen voor nieuwe uitdagingen. Deze systemen moeten vaak werken met
zeer beperkte middelen, waardoor het gebruik van C vaak een noodzaak is, wat
resulteert in dezelfde problemen als in de traditionele architecturen. Vanwege de
specifieke eisen van deze systemen, zullen de tegenmaatregelen ook verschillen van

xi

de tegenmaatregelen voor de traditionele systemen, hoewel sommige van dezelfde
basisideeën overgezet kunnen worden naar deze apparaten. Er bestaan vele soor-
ten van ingebedde aparaten, die op een groot aantal verschillende architecturen
draaien. Terwijl de grote hoeveelheid architecturen het moeilijker maakt voor aan-
vallers om kwetsbaarheden uit te buiten, zorgt dit ook voor extra complexiteit bij
het ontwikkelen van tegenmaatregelen.

In augustus 2006 werden een aantal kwetsbaarheden [Orm06a, Orm06b]
ontdekt in LibTIFF3. LibTIFF wordt gebruikt in een aantal desktop-
besturingssystemen, zoals Linux en Mac OS X. Het wordt ook gebruikt op de
Apple iPhone, waar deze kwetsbaarheid op grote schaal werd misbruikt door de
gebruikers van de iPhone [Moo] voor het uitvoeren van een “gevangenisuitbraak
”4. Deze kwetsbaarheid kan uitgebuit worden via zowel MobileMail (het mailpro-
gramma van de iPhone) en MobileSafari (de iPhone webbrowser) en als gevolg kan
deze kwetsbaarheid van op afstand uitgebuit worden door een gebruiker naar een
webstek te laten surfen waarop een specifiek TIFF-bestand te vinden is of door
een dergelijk bestand naar de gebruiker te e-mailen.

Deze kwetsbaarheid was ook aanwezig op een ander mobiel toestel: de Sony
PlayStation Portable, waar de kwetsbaarheid ook gebruikt werd om functionaliteit
aan te bieden buiten de goedkeuring van de fabrikant om. In dit geval werd
de kwetsbaarheid gebruikt om meer bevoegdheden te bekomen zodat gebruikers
zelfgemaakte spelletjes konden spelen.

Deze voorbeelden tonen aan dat software die oorspronkelijk ontworpen is voor
bureau-omgevingen op grote schaal overgezet wordt naar deze nieuwe apparaten,
wat resulteert in de aanwezigheid van gelijkaardige kwetsbaarheden in deze appa-
raten. Naarmate meer en meer van deze apparaten op de markt komen, zullen
vergelijkbare kwetsbaarheden ontdekt en uitgebuit worden.

Momenteel bestaan er zeer weinig tegenmaatregelen voor ingebedde systemen.
De belangrijkste tegenmaatregel die momenteel is ingezet op deze systemen is de
stapelkoekbescherming in Windows CE 6. Deze tegenmaatregel is gebaseerd op
de StackGuard tegenmaatregel [CPM+98], waar een geheim random getal voor
het terugkeeradres van de functie wordt geplaatst bij het starten van de functie
en waarvoor de terugkeer wordt bevestigd dat het getal niet veranderd is. De
achterliggende gedachte is dat een aanvaller het terugkeeradres niet zallen kunnen
wijzigen zonder ook het random getal te wijzigen. Dit getal moet wel geheim
blijven, anders kan een aanvaller het getal gewoon herschrijven bij het uitbuiten
van een bufferoverloop. Dit is een inherente zwakte in deze benadering.

Veel van de tegenmaatregelen die momenteel in gebruik zijn op de desktop
systemen kunnen overgezet worden naar ingebedde apparaten. Vanwege het be-

3LibTIFF is een bibliotheek voor het lezen en schrijven van TIFF-bestanden, een populair
formaat voor het opslaan van afbeeldingen

4Standaard is het niet mogelijk voor gebruikers om extra applicaties op de iPhone te instal-
leren. De term gevangenisuitbraak verwijst naar het omzeilen van deze beperkingen, waardoor
gebruikers in staat zijn om de volledige controle over het apparaat te bekomen.

xii

perkte geheugen en de verwerkingskracht is efficiëntie echter een belangrijke be-
zorgdheid bij deze apparaten. Verschillende andere beperkingen in de architectuur
kunnen ook een probleem zijn bij het overzetten van tegenmaatregelen naar deze
architecturen. Bijvoorbeeld, veel architecturen hebben geen ondersteuning voor
paginering, waardoor het moeilijk wordt om een tegenmaatregel zoals Adresruimte
Lay-out Randomisatie (ALR) op deze apparaten over te zetten.

Een ander belangrijke beperking bij het overzetten van tegenmaatregelen naar
ingebedde apparaten is het feit dat vele tegenmaatregelen werden ontworpen met
een specifieke architectuur of besturingssysteem in gedachten. Dit kan het over-
zetten moeilijker en gevoeliger voor omzeiling maken. Als een tegenmaatregel
wordt overgezet, dan zal de tegenmaatregelontwikkelaar moet zorgen dat de te-
genmaatregel niet gemakkelijk omzeild kan worden op het nieuwe platform. Een
voorbeeld waarbij een dergelijke overzetting fout is gegaan is wanneer Microsoft
de StackGuard tegenmaatregel [CPM+98] van GCC naar Visual Studio [Bra03]
heeft overgezet. De details van het Windows-besturingssysteem werden niet in
acht genomen, hetgeen resulteerde in het feit dat aanvallers de tegenmaatregel
konden omzeilen door het terugkeeradres te negeren en verder te schrijven op de
stack, totdat ze de functiewijzers die gebruikt worden voor de behandeling van uit-
zonderingen konden overschrijven. Vervolgens werd een uitzondering gegenereerd
door de aanvallers en kon hun gëınjecteerde code uitgevoerd [Lit03]. Een mogelijke
manier om dit soort problemen te voorkomen bij het overzetten van tegenmaat-
regelen naar een nieuw platform is door gebruik te maken van een machinemodel
voor tegenmaatregelen [YJP05].

5.2.2 Virtuele machine monitors

Andere technologieën als virtuele machine monitors kunnen ook de basis vormen
voor het ontwerpen van nieuwe tegenmaatregelen. Vanwege de opkomst van de ef-
ficiënte virtuele machines, is het mogelijk om tegenmaatregelen op een lager niveau
uit te werken dan voorheen mogelijk was: als er een programma wordt uitgevoerd
in een virtuele machine is het mogelijk om de hele architectuur te wijzigen om een
beveiligingsprobleem op te lossen, ipv. rond specifieke problemen van een bepaalde
architectuur te moeten werken. Dit kan nuttig zijn in het ontwerpen van prototy-
pes die kunnen worden toegepast op toekomstige herzieningen van de architectuur
of toegepast kunnen worden in een omgeving waarin virtuele machine monitors
gebruikt worden.

We zijn momenteel in het proces van het ontwerpen en implementeren van
een tegenmaatregel die gebruik maakt van een virtuele machine monitor om te
beschermen tegen de kwetsbaarheden die besproken werden in dit proefschrift.
De tegenmaatregel is gebaseerd op de observatie dat de meeste uitbuitingen die
leiden tot uitvoering van code, een beroep doen op het wijzigen van de waarde van
een wijzer. In deze tegenmaatregel worden alle wijzers opgeslagen in geheugen
dat enkel leesbaar is wat voorkomt dat deze rechtstreeks door een kwetsbaarheid

xiii

worden gewijzigd. Wanneer het programma schrijft naar een wijzer, genereert de
compiler een speciale instructie die kan worden gebruikt voor het schrijven naar het
geheugen van deze locatie. Deze instructie wordt dan geëmuleerd door de virtuele
machine monitor. Als een kwetsbaarheid bestaat in een programma waarmee een
aanvaller willekeurige geheugenlocaties kan overschrijven dan kan deze geen wijzers
wijzigen, omdat alleen de speciale instructie kan schrijven naar wijzers. Aanvallers
zijn niet in staat zijn om deze speciale instructie te genereren totdat zij in staat
zijn om code te uitvoeren. Deze tegenmaatregel zou een significante verbetering
van de bescherming tegen uitbuiting van deze kwetsbaarheden zijn. Zodra het
prototype heeft nagegaan of deze aanpak haalbaar is of niet, zou het gebruikt
kunnen worden als basis voor mogelijke latere herzieningen van de architectuur.

Referenties

[ble02] blexim. Basic integer overflows. Phrack, 60, December 2002.

[Bra03] Brandon Bray. Security improvements to the whidbey com-
piler. http://weblogs.asp.net/branbray/archive/2003/11/11/
51012.aspx, November 2003.

[CPM+98] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and
Qian Zhang. StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proceedings of the 7th USENIX Se-
curity Symposium, pages 63–78, San Antonio, Texas, U.S.A., January
1998. USENIX Association.

[DA06] Dinakar Dhurjati and Vikram Adve. Efficiently detecting all dangling
pointer uses in production servers. In Proceedings of the Internatio-
nal Conference on Dependable Systems and Networks, pages 269–280,
Philadelphia, Pennsylvania, U.S.A., 2006. IEEE Computer Society.

[Eco02] Computer Economics. 2001 economic impact of malicious code at-
tacks. http://www.computereconomics.com/article.cfm?id=133,
January 2002.

[Erl07] Úlfar Erlingsson. Low-level software security: Attacks and defenses.
Technical Report MSR-TR-2007-153, Microsoft Research, November
2007.

[Inc] Cisco Systems Inc. Cisco 2007 annual security report. http://
www.cisco.com/web/about/security/cspo/docsCisco2007Annual_
Security_Report.pdf.

xiv

[Lit03] David Litchfield. Defeating the stack based buffer overflow preven-
tion mechanism of microsoft windows 2003 server. http://www.
nextgenss.com/papers/defeating-w2k3-stack-protection.pdf,
September 2003.

[Moo] HD Moore. Cracking the iphone. http://blog.metasploit.com/
2007/10/cracking-iphone-part-1.html.

[Nat] National Institute of Standards and Technology. National vulnerability
database statistics. http://nvd.nist.gov/statistics.cfm.

[Orm06a] Tavis Ormandy. Libtiff next rle decoder remote heap buffer over-
flow vulnerability. http://www.securityfocus.com/bid/19282, Aug
2006.

[Orm06b] Tavis Ormandy. Libtiff tifffetchshortpair remote buffer overflow vul-
nerability. http://www.securityfocus.com/bid/19283, Aug 2006.

[vUCP06] Kevin Poulson vs. U.S Customs and Border Protection. Declaration of
shari suzuki in opposition to motion for summary judgement. http://
wiredblogs.tripod.com/27BStroke6/suzukidecl.pdf, May 2006.

[Wika] Wikipedia. Project triangle. http://en.wikipedia.org/wiki/
Project_triangle.

[Wikb] Wikipedia. Wikipedia entry for the sasser worm. http://en.
wikipedia.org/wiki/Sasser.

[YJP05] Yves Younan, Wouter Joosen, and Frank Piessens. A methodology for
designing countermeasures against current and future code injection
attacks. In Proceedings of the Third IEEE International Informati-
on Assurance Workshop 2005 (IWIA2005), College Park, Maryland,
U.S.A., March 2005. IEEE, IEEE Press.

[You03] Yves Younan. An overview of common programming security vul-
nerabilities and possible solutions. Master’s thesis, Vrije Universiteit
Brussel, 2003.

xv

	Cover
	Thesis
	Samenvatting

