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Abstract
In this paper, we examine the possibility of using virtual-

ization to implement a countermeasure that protects against
buffer overflow attacks. The countermeasure works by
adding a few extra instructions to the architecture that are
emulated by the hypervisor. After running performance
benchmarks, a high overhead was observed. Our proof-
of-concept software implementation illustrates that the pro-
posed approach is feasible and that the hardware implemen-
tation confirms a negligible overhead.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2

[Software]: Software Engineering

General Terms
system security

Keywords
buffer overflows, countermeasure, virtualization

1 Introduction
Virtualization has become a very popular technology. Af-

ter Intel added support for virtualization to its processors
[21, 31], this popularity increased even more. Windows
Server 2008 comes with a hypervisor [3], which will make
this technology even more widely deployed.

Since the focus for the deployment of virtualization tech-
nology has been on servers we think that a logical place to
increase security seems at the level of the virtual machine
monitor or hypervisor. In this paper we examine how we can
use virtualization technology to better protect against buffer
overflow vulnerabilities.
We show that adding this kind of countermeasure to a virtu-
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alized environment is feasible but, due to the high overhead
it is not realistic.

Despite persistent research in the field, one of the most
insidious vulnerabilities affecting software nowadays is still
the buffer overflow. According to the NIST’s National Vul-
nerability Database[4], 587 (10% of all reported vulnerabil-
ities) buffer overflow vulnerabilities were reported in 2008.
Almost 90% of those vulnerabilities had a high severity rat-
ing. A large amount of countermeasures have been designed
to avoid buffer overflow attacks. But since many different
types of attack exist and because effective countermeasures
are often affected by considerable overhead, more research
into this topic needs to be done.
Most of the buffer overflow vulnerabilities are located on the
stack [35] and one of the most effective way to change the
execution flow of the program is to modify the return ad-
dress of a function. The vulnerability described in this paper
normally occurs in languages that allow the programmer to
access memory locations directly, without any restrictions.
Thus these languages, normally used to build high perfor-
mance applications, are also considered unsafe. Designing
countermeasures to improve security for unsafe languages is
a direction not to neglect. A survey of vulnerabilities and
countermeasures for such languages is reported in [38, 18].
This paper is structured as follows: Section 2 gives a de-
scription of buffer overflow by an example. In Section 3
an overview of known countermeasures is reported together
with a comparison between the two most used strategies
against the vulnerability. A detailed description of our imple-
mentation in a virtualized environment is described in Sec-
tion 4. An evaluation of our countermeasure is provided in
Section 4.1. Section 6 presents some possible future devel-
opments and improvements. Our conclusions are provided
in Section 7.
2 Problem description

A buffer overflow is the result of stuffing more data into a
buffer than it can handle and may allow an attacker to control
the execution flow of the attacked program.

A return-address attack is an attack where the attacker
exploits a buffer overflow vulnerability to change the return
address of a function. It is often performed together with
code injection through shellcode. This execution of arbitrary
code is what results in the high severity rating of most of the



reported vulnerabilities. A typical function that is vulnerable
to a buffer overflow is given in Listing 1

Listing 1: A function that is vulnerable to buffer overflow
char* vuln_foo(char *msg) {

char *p;
char buffer[30];
p=buffer;
strcpy(p, msg);

}

A standard prologue saves the frame pointer (FP) to the
stack and allocates space for local variables. The epilogue
restores the saved frame and stack pointer (SP) as in Listing
2.

Listing 2: The standard prologue and epilogue of vuln foo()
prologue:

pushl %ebp
mov %esp, %ebp
// local variables

(vuln_foo body)

epilogue:
leave // copies %ebp into %esp

// restores %ebp from stack
ret

// jump to address on
// top of the stack

If buffer can be overflowed, all out-of-boundary bytes
may alter the value of pointer p, the saved frame pointer
%ebp, the return address, vuln foo()’s arguments and so
on towards higher addresses. If the return address (RET) is
changed, the execution flow is hooked to the new address (if
valid) and when the function returns, arbitrary code at that
location will be executed.
3 Related work

Many countermeasures exist to protect against these types
of problems [17, 37]. They range from safe languages
[16, 23, 28, 29, 36] that remove the vulnerabilities entirely,
to bounds checkers [6, 15, 25, 32] that will perform runtime
checks for out-of-bounds accesses, to very lightweight coun-
termeasures that prevent certain memory locations from be-
ing overwritten [14, 11, 39, 40] or prevent attackers from
finding or executing injected code[8, 9, 10, 13, 26]. Other
countermeasures will provide execution monitoring to pre-
vent or detect applications deviating from their normal be-
havior [5, 27, 33]. An extensive survey of these countermea-
sures can be found in [37, 38]. Two countermeasures are
closely related to our approach: StackShield [34] and RAD
[12].
StackShield saves a copy of the return address of the function
(RET) to a memory area previously allocated and restores it
from this memory before returning [34]. The restored return
address is not compared with the one saved in the prologue,
however if detection is needed then it is trivial to add this.
This strategy will keep the execution flow unchanged since
the protected function always returns to its caller. Unfortu-
nately this strategy is still affected by some drawbacks. The
most relevant is that retarray is allocated in normal memory

which is not the safest choice. Stackshield protects against
return address attacks, not generic stack smashing. Local
variables, functions’ arguments, saved frame pointers may
still be altered by different tricks. Some techniques to by-
pass this type of protections are described in [7, 30].
A higher level of security is granted by Return Address De-
fender (RAD) [12], however this countermeasure also comes
with a higher performance penalty.
RAD automatically creates a Return Address Repository
(RAR) to save return addresses. Two similar protection
modes are proposed: minezone RAD and read-only RAD.
Minezone RAD sets guard pages1 surrounding RAR (mine
zones) by a mprotect() system call. This protection is exe-
cuted once, at program startup. With this mechanism RAR
might be altered by a direct return address modification at-
tack

2

(if the attacked program satisfies several special condi-
tions [12]) without modifying the mine zones.
Read-only RAD avoid this possibility by setting the RAR
read-only. This protection is executed in the prologue code
of each function call, after pushing the current address into
the RAR. The performance penalty introduced by this mech-
anism is higher than in the former since two system calls are
required for each function call.
Macro and micro benchmarks show that programs protected
by read-only RAD experience a slow-down ranging from
140x to 200x [12].

4 Protecting return addresses at a lower level
Although the countermeasure introduced by Read-only

RAD is considered safer and harder to exploit 3 a serious
performance drawback must be taken into account. The
countermeasure is very expensive because of the need to do
two system calls in each function’s prologue.
A solution to the serious performance penalty introduced
might be to implement this strategy using virtualization
by adding new instructions to save and restore the return
address from a read-only memory. The overhead of such
a solution is expected to be much lower than the compiler
version introduced by RAD.

Since virtualization is a widely deployed technology
nowadays we are confident that it might represent the best
scenario for such an implementation. In our implementation
we emulated these new instructions in the Xen Hypervisor
[2] in order to create a real-life demonstration with an exten-
sively used virtualizing product.

1Guard pages are pages that have no permissions set, any at-
tempt to access them will cause a segmentation violation

2A typical scenario for a direct return address modification at-
tack is represented by the statement *A=B where A is a pointer
variable and B is a variable. If there are vulnerabilities that may
allow an attacker to change A and B’s values, the address pointed
to by the new value of A will get the new value of B. This may al-
low to change the content of any memory location, including return
addresses.

3No alterations are possible on the RAR where return addresses
are saved. All other areas of the stack are still not protected.



The general idea of the countermeasure described in this pa-
per is similar to the one used by RAD. But our implementa-
tion uses special (emulated) hardware instructions to access
read-only memory where all the return addresses are stored.

New code must be added to implement this feature.
The assembly code generated by our modified GCC and
instrumented with the new instructions is given below
(Listing 3).

Listing 3: Instrumented assembly code of vuln foo()
main:

call init_callretx
...

vuln_foo:
prologue:

pushl %ebp
mov %esp, %ebp

// local variables
callx

(vuln_foo body)
epilogue:

retx
leave // copies %ebp into %esp

// restores %ebp from stack
ret // jump to address on

// top of the stack

A library to allocate a 4KB page and mprotect it has been
written and called at the beginning of every program in the
main function. Two new hardware instructions are used to
protect the function’s return address and only these two in-
structions can access the read-only memory previously al-
located. This is achieved by adding the two instructions to
the instruction set of the virtualized processor which will be
trapped by the Xen hypervisor and will be emulated to save
and restore the return address. In our implementation

• callx

is added before the call instruction, it will save the re-
turn address onto the protected memory page

• retx

is added right before the assembler leave instruction
in function’s epilogue. It will restore the return address
from the protected memory page onto the stack.

Return addresses of nested functions are stored at higher
addresses within the page with the aid of a counter that per-
mits to handle return addresses in a Last-In-First-Out order.
This order will be preserved until the maximum number of
nested functions is reached. This number depends on the
size of the mprotected page, which is 4KB in our implemen-
tation. Since the x86 architecture handles 32 bit addresses
and a counter of the same size is required, our countermea-
sure can handle up to 1023 nested functions.
The basic idea used to implement this in Xen is to clear the
write protection bit (WP) in the Control Register 0 (CR0)
4 before any write operation to read-only memory and then
set it again. The Xen Hypervisor, which runs in supervisor
mode, needs to be able to write to a read-only page from

4CR0 has control flags that modify the basic operation of the
processor. WP bit is normally set to prevent supervisor from writing
into read-only memory.

Program Base r/t(s) Instr. r/t(s) Overhead
164.gzip 223 3203 13x
175.vpr 372 2892 6x
176.gcc 225 2191 8x
181.mcf 640 3849 5x
186.crafty 114 3676 31x
256.bzip2 307 5161 16x
300.twolf 717 4007 4x

Table 1: SPEC CPU2000 benchmark results of our imple-
mentation in Xen

the user space memory. By unsetting the WP in CR0, the
memory management unit does not check whether the page
is read-only or not, allowing the new instruction to write di-
rectly.
Although Xen has the necessary code to capture illegal in-
structions, some setup is required to handle the new instruc-
tions’ opcodes. New code that checks if the opcode we want
to emulate occurred has been added. When the new in-
struction’s opcode occurs, the user space program context
(ctxt structure) is updated. This is required before call-
ing x86 emulate which will take the context structure as
parameter and performs the emulation. Before calling this
function, the WP bit of CR0 must be unset. Thus when
x86 emulate is called, all writes to memory can happen
without any fault.
New code to emulate the callx and retx instructions in the
hypervisor has been added to x86 emulate.c.

Since we need to save the return address from current
stack to memory (callx) and from memory back to the stack
(retx), we need two functions that move data from one space
to the other. As in a regular Linux kernel the copy to user
and copy from user functions perform this task. A counter
is needed to handle nested functions. This variable is incre-
mented in callx and copied to the read-only memory, decre-
mented in retx and copied back to the stack, to preserve a
LIFO order.
A check if the return address has been altered may be per-
formed before overwriting it with the saved value. However
this will lead to a higher overhead in the overall test result.

4.1 Evaluation
To test the performance overhead we ran several integer

benchmarks from the suite SPEC CPU2000 [24]. We col-
lected results running programs instrumented with the code
that implements the countermeasure and without.
All tests were run on a single machine (Intel(R) Core(TM)2
Duo CPU E6750@2.66GHz, 4096MB RAM, GNU/Linux
kernel 2.6.24-xen) running Xen 3.3.0. The GCC 4.2.3 com-
piler has been modified to instrument assembler code with
new instructions.
The benchmarks show that this implementation experiences
the unacceptable factor of between 5x to 30x slow-down (Ta-
ble 1). Memory overhead is 4KB, which is negligible in
comparison to memory required by the program itself.

The Xen implementation is affected by a significant in-
crease of the execution time when compared to reference



Table 2: SPEC CPU2000 benchmark results of our imple-
mentation in QEMU

Program Base r/t(s) Instr. r/t(s) Overhead
164.gzip 1368 1446 1.05x
176.gcc 1010 1067 1.05x
181.mcf 646 701 1.08x
186.crafty 1542 1656 1.07x
197.parser 2652 2844 1.07x
255.vortex 2458 2606 1.06x
256.bzip2 1638 1729 1.05x
300.twolf 2316 2399 1.03x

time. That is mostly due to the context switch to the hy-
pervisor that is needed to perform the emulation.
We conclude from this, that this type of countermeasure,
while technically feasible and faster than RAD, does not
have a realistic chance of deployment except in higher se-
curity environments.
5 Optimization through hardware support

The overhead introduced by Xen lead us to implement the
same countermeasure in an emulated environment in order to
show that this countermeasure may have a real life deploy-
ment if implemented in hardware. QEMU [1], a processor
emulator, has been used for this purpose.

We added the same instructions to the emulated x86
instruction set. Although our countermeasure has been
performed on an emulated x86 architecture, an implementa-
tion for all the other emulated processors is straightforward
since we have created a store instruction common to all
architectures emulated by QEMU [1].

A new Memory Management Unit (MMU) mode for the
emulated x86 processor has been created.
When a normal store function is executed with this new
mode, the MMU performs the translation from virtual to real
address and automatically enables write permissions right
before adding the translated entry to the Translation Looka-
side Buffer (TLB)[22].

With this mechanism we allow callx and retx instructions
to perform writes to the protected memory in order to save
and restore the return address respectively. To test the per-
formance overhead of this implementation we used the same
machine and configuration, with a different kernel version
(2.6.27-9) and QEMU 0.9.1 (svn trunk). The performance of
the same countermeasure implemented into hardware greatly
increased, as expected (Table 2) We have performed a com-
parison with the original unprotected QEMU to have an idea
of the overhead - up to 6% - introduced by our countermea-
sure with respect to the non instrumented version.
6 Future work

As previously reported our countermeasure does not de-
tect if a buffer overflow has occurred since it overwrites the
return address of the protected function, without checking if
it has been altered.
Is a failed-with-segfault program better than one that repairs
the fault and continues its execution as nothing happened?

This is still an unanswered question. Our countermeasure
allows the protected function to recover its caller’s return ad-
dress and continue its normal execution flow. We are aware
that there are cases in which it is better to terminate the at-
tacked program and log that a buffer overflow has occurred.
A check of the saved return address to detect if the one cur-
rently on the stack has been tainted might be implemented
with a little more overhead.
As explained this countermeasure protects only return ad-
dresses of functions. As discussed in [30], functions pro-
tected by such a countermeasure suffer from the attack to
other components of the stack as local variables, function’s
arguments, saved frame pointers, etcetera. This counter-
measure could be extended based on the observation that
many exploits that result in code execution, rely on modi-
fying the value of a pointer. In this extended countermea-
sure, all pointers are stored in read-only memory preventing
them from being modified directly by a vulnerability. When-
ever the program writes to a pointer, the compiler generates
a special instruction that can be used to write to this pointer.
If a vulnerability exists in a program that allows an attacker
to overwrite arbitrary memory locations, this is prevented be-
cause only the special instruction can write to pointers. Since
attackers are not be able to generate this special instruction
until they are able to achieve code execution, this counter-
measure would provide a significant improvement in protec-
tion against exploitation of these vulnerabilities.

7 Conclusion
We described a countermeasure against the return address

attack and implemented it by emulating hardware instruc-
tions for a virtualizing environment. Our main goal was to
implement such a countermeasure for the widely used vir-
tualization technology of Xen. Macro and micro bench-
marks revealed a high overhead mainly caused by the con-
text switch needed to emulate the necessary instructions to
store and read the return addresses from a protected page.
This means that it is not a countermeasure that can be used
in a realistic deployment setting. However, results from the
same implementation for an emulated processor showed that
it may be more feasible in hardware.
We have considered virtualization as a platform to develop
countermeasures for. With a different approach, the idea of
implementing countermeasures against buffer overflows in
hardware and virtualization is a promising solution in terms
of performances and security.
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