
john.wilander@gmail.com nick.nikiforakis@cs.kuleuven.be

yves.younan@cs.kuleuven.be mariam.kamkar@liu.se wouter.joosen@cs.kuleuven.be

Despite the plethora of research done in code injection coun-
termeasures, buffer overflows still plague modern software.
In 2003, Wilander and Kamkar published a comparative
evaluation on runtime buffer overflow prevention technolo-
gies using a testbed of 20 attack forms and demonstrated
that the best prevention tool missed 50% of the attack forms.
Since then, many new prevention tools have been presented
using that testbed to show that they performed better, not
missing any of the attack forms. At the same time though,
there have been major developments in the ways of buffer
overflow exploitation.
In this paper we present RIPE, an extension of Wilan-

der’s and Kamkar’s testbed which covers 850 attack forms.
The main purpose of RIPE is to provide a standard way of
testing the coverage of a defense mechanism against buffer
overflows. In order to test RIPE we use it to empirically
evaluate some of the newer prevention techniques. Our re-
sults show that the most popular, publicly available coun-
termeasures cannot prevent all of RIPE’s buffer overflow
attack forms. ProPolice misses 60%, LibsafePlus+TIED
misses 23%, CRED misses 21%, and Ubuntu 9.10 with non-
executable memory and stack protection misses 11%.

D.4.6 [Operating Systems]: Security and Protection—In-
vasive software; D.2.8 [Software Engineering]: Metrics—
Product metric

Buffer overflows are probably the single most well-known
exploitation technique in the history of computer security.
The ability to take control of the execution flow of a pro-
cess by overwriting adjacent data, first received world-wide
attention through the Morris worm [43] and since then has
been used as the exploitation mechanism in most of the well-

known worms (e.g. CodeRed [29] and SQLSlammer [28]) as
well as in countless attacks against popular software. Due to
the severity and popularity of this attack, researchers have
produced a significant amount of papers describing tech-
niques which can, among others, detect, defend, stop and
heal buffer-overflows at all possible stages of a program’s
lifetime. A small number of these suggested techniques have
reached production level, by being included in popular pro-
gramming frameworks and operating systems.

Despite the amount of research conducted in the area of
buffer overflows in specific, and code injection techniques in
general, modern software is still plagued by buffer-overflows
which are discovered, almost weekly, in one of the many
popular software products. At the time of this writing, the
US-CERT [47] reports that over 200 buffer-overflow vulnera-
bilities have been found in 2011, many of which are in prod-
ucts of Microsoft, Adobe and Google. This shows that the
problem of buffer overflows is far from resolved and that re-
searchers in both academia and industry should focus their
efforts in creating countermeasures that can eventually be
part of real running systems.

While there are standard ways to measure the perfor-
mance overhead of a buffer overflow countermeasure, such
as the SPEC CPU [44] and Olden benchmarks, there is no
standard way of testing and comparing the defense coverage
of any given countermeasure.

In 2003, Wilander and Kamkar [53] published a compar-
ative evaluation on runtime buffer overflow prevention us-
ing a testbed of 20 attack forms and demonstrated that the
best prevention tool missed 50% of the attack forms. That
testbed has been used to demonstrate the effectiveness of
subsequent tools and techniques [11, 14, 15, 35, 37, 46] and
the outcome of the 2003 evaluation was used to motivate
further preventive research [16, 27, 36, 40].

We believe that many of the attack techniques tested by
that testbed are now outdated and thus a perfect“score”of a
protection countermeasure against them is of limited value.

In this paper we introduce RIPE—Runtime Intrusion Pre-
vention Evaluator—which comprises of 850 buffer overflow
attack forms. The main purpose of RIPE is to quantify
the protection coverage of any given countermeasure by per-
forming a wide range of buffer-overflow attacks and record-
ing their success or failure. The tool is released as free
software (see Section 10 for availability) in an attempt to
standardize the comparison between countermeasures and
to further support research on code-injection countermea-
sures. In order to test the applicability and usability of the



RIPE testbed, we tested it against buffer overflow counter-
measures that the authors have made publicly available or
that were kindly provided to us.
This paper and the release of the RIPE testbed provides

the following research contributions:

1. Implementation of the combinatorial set of buffer over-
flow attack forms built on 4 locations of buffers in
memory, 16 target code pointers, 2 overflow techniques,
5 variants of attack code being executed, and 10 func-
tions being abused. In total, 850 working attack forms.

2. Empirical evaluation of publicly available buffer over-
flow countermeasures using canaries, boundary check-
ing, copying and checking target data, library wrap-
ping, and non-executable memory.

3. Open source, fully documented testbed code and driver
engine for evaluation and reporting.

The rest of this paper is structured as follows: The RIPE
testbed is described in Sections 2 and 3. Section 4 gives
an overview of buffer overflow prevention techniques. Our
evaluation setup is explained in Section 5 and the results
are presented in Section 6. Section 7 contains related work.
Finally, Section 8 describes future work and we conclude in
Section 9.

The RIPE (Runtime Intrusion Prevention Evaluator) testbed
has a backend built in C and a frontend built in Python. The
backend or “attack generator”of RIPE lets the user dynami-
cally specify which type of buffer overflow she wants to test.
For instance:

./ripe_attack_generator -f strcpy -t direct -l stack
-c ret -i nonop

... will perform the standard stack smashing attack abus-
ing the strcpy() function to overflow a buffer on the stack
all the way to the return pointer, redirecting it to injected
attack code without a NOP sled. As another example:

./ripe_attack_generator -f sscanf -t indirect -l heap
-c funcptrstackparam -i returnintolibc

... will abuse the sscanf() function to perform an overflow
of a buffer located on the heap, overwrite a general pointer
and make it point to a function pointer parameter (indirect
attack), and redirect that function pointer to return-into-
libc attack code. In the next sections, we will present RIPE’s
dimensions, which are essentially all the user-configurable
parameters of an attack. Then we’ll enumerate all the pa-
rameters that build up the combined 850 attack forms.

Wilander and Kamkar’s testbed (hereafter referred to as
the “NDSS’03 testbed”) had three dimensions all of which
are included in the new RIPE testbed too; location of buffer
in memory, target code pointer, and overflow technique -
Fig 1(a).
The new RIPE testbed has five dimensions including ex-

tended versions of the original three. The additions are at-
tack code and function abused - Fig 1(b).

The first testbed dimension is the memory location of the
buffer to be overflowed. Both the NDSS’03 testbed and
RIPE support four buffer locations; Stack, Heap, BSS, and
Data segment.

(a) Dimensions of NDSS’03
testbed

(b) Dimensions of RIPE
testbed

Figure 1: The difference of dimensions supported by
the NDSS’03 testbed and RIPE

The second testbed dimension is the target code pointer,
i.e. the code pointer to redirect towards the attack code.
RIPE supports the following target code pointers:

• Return address: The address stored by a function in
order to return to the appropriate offset of the caller

• Old base pointer : The previous contents of the EBP

register, which is used to reference function arguments
and local variables

• Function pointers: Generic function pointers allowing
programmers to dynamically call different functions
from the same code

• Longjmp buffers: Setjmp/longjmp is a technique which
allows programmers to easily jump back to a prede-
fined point in their code (see Sec. 3.2).

• Vulnerable Structs: Structs which group a buffer and
a function pointer and can be abused by attackers to
overflow from one to the other (see Sec. 3.3).

With the exception of the Return Address and the Old
base pointer targets that are Stack-specific, all other targets
are allocated on all available data segments of a process,
i.e. on the Stack (both as local variables and function argu-
ments), on the Heap and on the Data/BSS segment.

The third testbed dimension is overflow technique. Both
the NDSS’03 testbed and RIPE support Direct and Indi-
rect overflowing techniques. In direct techniques, the tar-
get is adjacent to the overflowed buffer or can be reached
by sequentially overflowing from the buffer. On the other
hand, indirect overflowing makes use of generic pointers in
a two-step approach. First the generic pointer is overflowed
with the address of the target and then at a later deref-
erence, the target is overwritten with attacker-controlled



data. This technique was originally introduced by Bulba
and Kil3r [10] as a way to bypass the StackGuard coun-
termeasure. A pointer before the StackGuard canary was
used to overwrite the return-address while maintaining the
integrity of the canary.

The fourth testbed dimension is new for RIPE – attack
code. A user running the testbed can choose between attack
code that spawns a shell on the vulnerable machine or attack
code that creates a file in a specific directory. The former can
be used when trying out individual attacks and the latter is
used by the front-end part of RIPE which exhaustively tries
all available attack combinations and then reports the full
results. The variations of these two shellcodes are presented
in the following list:

• Shellcode without NOP sled : This option can be useful
in testing the accuracy of attacks as well as challenge
countermeasures that rely on the detection of specific
code patterns (such as the presence of a set of 0x90

bytes (NOP)) in the process’ address space.

• Shellcode with NOP sled : This is the most-used form
of shellcode that prepends the attacker’s functional-
ity with a set of NO-Operation instructions to im-
prove the attacker’s chances of correctly redirecting the
execution-flow of the program into his injected code.

• Shellcode with polymorphic NOP sled : In this case, the
NOP sled is not the standard set of 0x90 bytes but a
set of instructions that can be executed without affect-
ing the correctness of the actual attack code. As with
the first variation, countermeasures that over-rely in
the presence of standardized NOP-sleds will have diffi-
culty countering such attacks. Akritidis et al. [1] con-
ducted a study where, among others, they showed how
obfuscation and encryption can be used by attackers to
evade Network Intrusion Detection Systems (NIDS).

• Return-into-libc: Return-into-libc are attacks where
the attacker does not inject new code in the process’
address space but rather uses existing functions to per-
form his attack, for instance using the system libc-
function to execute an interactive shell. This attack
was essentially a natural evolution for attackers, when
countermeasures that disallowed execution from writable
memory pages, e.g. Data Execution Prevention (DEP)
and W⊕X, became popular in modern operating sys-
tems. RIPE uses system() for the spawning of an
interactive shell and creat() for creating new files.

• Return-Oriented Programming (ROP): Return-oriented
programming [38] is the most recent way of carrying-
out exploitation, once an attacker has achieved con-
trol of the execution flow. ROP is a generalization of
Return-into-libc where now an attacker can use chunks
of functionality from existing code (gadgets) and com-
bine them to create new functionality. While we have
implemented a ROP attack in our testbed, we haven’t
yet implemented stack-pivoting techniques and thus
we can only trigger such an attack when we control
the contents of the existing stack, as is the case in a
stack-smashing attack.

(a) Direct Attack

(b) Indirect Attack

Figure 2: A direct and an indirect overflow payload
with injected attack code

The fifth and final testbed dimension is also new for RIPE
– function abused. A user can choose to perform the buffer
overflow with memcpy(), strcpy(), strncpy(), sprintf(),
snprintf(), strcat(), strncat(), sscanf(), fscanf(), and
also with “homebrew”, a loop-based equivalent of memcpy.

The n-containing functions are designed to take the target
buffer size into account which should prevent buffer over-
flows. The size however, is provided by the developer (static
or calculated) and thus a miscalculation can cancel-out the
protection offered by these functions. Known caveats in-
clude the fact that parameter n means total buffer size for
strncpy() but remaining buffer space for strncat() [25],
and if n is undefined for instance because of a NULL value in
the length calculation strncpy() will allow for buffer over-
flow as shown in CVE-2009-4035 [22]:

line1 = getNext(line); // May return NULL
if ((n = line1 - line) > 255) {
n = 255;

}
strncpy(buf, line, n); // n undef or < 0

RIPE’s attack generator dynamically builds the specified
payload and performs the attack on itself, i.e., the code con-
tains all the required vulnerable buffers and pointers as well
as the logic for offsets, attack code and overflows.

Figure 2(a) shows the payload of a direct overflow with
injected code, and Figure 2(b) shows an indirect overflow
using an intermediate pointer to target the code pointer.

The old base pointer is pushed on the stack immediately
above the return address and is a possible target code pointer.
The overflow redirects the base pointer towards an injected
fake stack frame with a fake return pointer pointing to the
attack code - Fig. 3(a).



(a) Fake Stack Frame

(b) Overflowed struct

Figure 3: An attack where a fake stack frame (with
an attacker-controlled return address) is created and
an overflow of a function pointer from within the
same struct

Longjmp in C allows the programmer to explicitly jump
back to functions, not going through the chain of return ad-
dresses. Consider a program where function A first calls
setjmp(), then calls function B which in turn calls func-
tion C. If C now calls longjmp() the control is directly
transferred back to function A, popping both C’s and B’s
stack frames of the stack. Longjmp buffers contain the envi-
ronment data required to resume execution from the point
setjmp() was called. This environment data includes a base
pointer and a program counter. If the program counter is
redirected to attack code the attack will be executed when
longjmp() is called.

A struct containing a buffer and a function pointer can
allow for an internal buffer overflow attack within the struct
since there is no reordering of variables to make the code
pointer unreachable from the buffer, nor are there any ca-
nary values between the buffer and the target code pointer
- Fig 3(b). Such structs have been previously discussed by
Zhivich et al.[54].

The research in countering buffer overflow attacks at run-
time has gone in several directions. We have identified six
general categories or techniques, namely canary-based, bound-
ary checking, copying and checking target data, encrypted
instruction addresses, library wrappers, and non-executable
and randomized memory. Our evaluation covers all but
encrypted instruction addresses since we were not able to
locate a publicly-available countermeasure performing such
operations.

This technique was invented by Cowan et al [18] and pre-
vents buffer overflows by adding a canary value to sensitive
memory regions. The canary’s integrity is checked before the
sensitive memory is used. If the canary has been changed
the sensitive memory may have been corrupted and the pro-
gram is typically terminated. Other tools have adopted the
canary, for instance detection of heap-based overflows tar-
geting malloc linked lists by Robertson et al [36], Microsoft’s
/GC compiler flag [9], and stack protection with ProPolice by
Etoh et al [21]. ProPolice is covered in our empirical evalu-
ation and is presented in more detail in Sec. 5.1.

Standard C and C++ do not have runtime bounds check-
ing unlike newer languages such as Java and C#. This is
one of the fundamental design decisions that make buffer
overflow attacks possible. Researchers have implemented
variants of C compilers that include boundary checking in
binaries.

In 1997 Jones and Kelly presented a GCC compiler patch
in which they implemented runtime bounds checking of vari-
ables [26]. Sadly their solution suffered from performance
penalties of more than 400%, as well as incompatibility with
real-world programs [17]. Ruwase and Lam continued Jones’
and Kelly’s work and have implemented a GCC patch called
“CRED” [37]. CRED is covered in our empirical evaluation
and is presented in section 5.5.

StackShield [50] and Libverify [5] were the first buffer
overflow prevention tools that used the technique of stor-
ing copies of return addresses on a separate stack. When
a function returned, its stored return address is checked
against the copy on the separate stack. If the addresses
differed either the correct address was copied back or exe-
cution was halted. StackShield is a compiler patch whereas
Libverify patched the code during load. Both StackShield
and Libverify are covered in our empirical evaluation and
are presented in section 5.2 and 5.3.

Chiueh and Hsu [13] presented a compiler patch called
RAD in 2001. It used a separate stack to keep copies of
return addresses similar to StackShield. Smirnov and Chi-
ueh have continued the work and implemented a more com-
plex GCC patch called DIRA [42]. Apart from the separate
stack with copies of return addresses, DIRA keeps copies
of function pointer values in a special buffer.Nebenzahl and
Wool [30] have developed a technique for instrumentingWin-
dows binaries at install-time with a separate stack for copies
of return addresses.

Buffer overflow prevention through library wrappers was
originally done by Baratloo, Singh, and Tsai, and their tool
was called Libsafe [4]. It patches library functions in C that
constitute potential buffer overflow vulnerabilities. In the
patched functions a range check is made before the actual
function call. As a boundary value Libsafe uses the old base
pointer pushed onto the stack after the return address.

Avijit, Gupta and Gupta continued the work by Baratloo
et al by implementing LibsafePlus and TIED [3, 2]. Their
system collects and stores information about the sizes of
both stack and heap buffers. This information is then used



at runtime to ensure that no character buffers are written
past their limit. Libsafe, LibsafePlus, and TIED are all cov-
ered in our empirical evaluation and are presented in more
detail in Sections 5.3 and 5.4.

The Linux kernel patch from the Openwall Project was
the first to implement a non-executable stack [19]. Not
allowing execution of code stored on the stack effectively
stops execution of attack code injected on the stack and on
the heap. In some cases, researchers have been able to cir-
cumvent this countermeasure by abusing certain traits of a
program, e.g. convincing the Just-in-time compiler of Ac-
tionScript in Macromedia Flash to place attacker-code in
their writable and executable memory pages [8].
Two more recent kernel patches that deny execution both

on the stack and on the heap are PaX [23] and ExecShield
[49]. They also randomize address offsets from the base of
memory locations, called Address Space Layout Random-
ization, to further countermeasure buffer overflow attacks.
DieHard [6] and its continuation DieHarder [31] are mem-
ory allocators which randomize the location of heap objects
on the heap and require larger-than-needed address spaces
to ensure probabilistic safety. Even though DieHard is pub-
licly available we could not include it in our evaluation since
RIPE is a process that attacks itself calculating the needed
offsets from within its source code (see Sec. 8). This means,
that RIPE would “unfairly” de-randomize DieHard and suc-
cessfully perform all of the attacks.

We have used RIPE to evaluate a number of preventive
tools and techniques designed to counter buffer overflow at-
tacks, namely ProPolice (canary-based), CRED (boundary
checking), StackShield and Libverify (copying and checking
target data), Libsafe, LibsafePlus, LibsafePlus+TIED (li-
brary wrappers), and PAE and XD (non-executable mem-
ory).
The theoretical number of attack forms produced by mul-

tiplying all the choices is 3,840 (4 locations * 16 target code
pointers * 2 techniques * 3 variants of attack code without
NOP sled variations * 10 functions being abused). How-
ever, that number incorporates 2,990 practically impossible
attack forms. For instance it is not possible to perform a di-
rect buffer overflow all the way from the BSS segment to the
stack due to the unmapped heap pages and the guard page
separating the stack and heap. Thus, the number of work-
ing attack forms is 850. In the empirical evaluation we have
left out the three NOP versions and only executed with one
(the simple NOP sled). Since none of the protection tools
or techniques evaluated tries to detect NOP sleds per se in-
cluding them would not change the results of the current
analysis. Nevertheless RIPE supports three different NOP
sled settings for attack code.

Hiroaki Etoh and Kunikazu Yoda from IBM Research
in Tokyo have implemented a compiler protection called
ProPolice [21]. It borrows the main idea from StackGuard—
canary, or guard values to detect attacks on the stack. The
guard is placed between the buffers and the old base pointer
meaning it protects both the return pointer and the old
base-pointer from direct overflows. In addition to the guard,

ProPolice rearranges the local stack variables so that char

buffers always are allocated at the bottom, next to the ca-
nary, where they cannot harm any other local variables if
overflowed. Non-char buffer variables can only be attacked
if they are part of a struct that also contains a buffer.

StackShield is a compiler patch for GCC made by Ven-
dicator [50]. In the current version 0.7 it implements three
types of protection, two against overwriting of the return ad-
dress (both can be used at the same time) and one against
overwriting of function pointers.

The Global Ret Stack protection of the return address is
the default choice for StackShield. It is a separate stack for
storing the return addresses of functions called during execu-
tion. The stack is a global array of 32-bit entries. Whenever
a function call is made, the return address being pushed
onto the normal stack is at the same time copied into the
Global Ret Stack array. When the function returns, the re-
turn address on the normal stack is replaced by the copy on
the Global Ret Stack. If an attacker had overwritten the
return address in one way or another the attack would be
stopped without terminating the process execution. Note
that no comparison is made between the return address on
the stack and the copy on the Global Ret Stack allowing the
countermeasure to prevent but not to detect buffer overflows
(and possible corruption of data due to them). The Global
Ret Stack has by default 256 entries which limits the nesting
depth to 256 protected function calls. Further function calls
will be unprotected but execute normally.

A somewhat simpler but faster version of StackShield’s
protection of return addresses is the Ret Range Check. It
uses a global variable to store the return address of the cur-
rent function. Before returning, the return address on the
stack is compared with the stored copy in the global vari-
able. If there is a difference the execution is halted. Note
that the Ret Range Check can detect an attack as opposed
to the Global Ret Stack described above.

StackShield also aims to protect function pointers from be-
ing overwritten. The idea is that function pointers normally
should point into the text segment of the process’ mem-
ory where the programmer is likely to have implemented
the functions to point at. If the process can ensure that
no function pointer is allowed to point into other parts of
memory than the text segment, it will be impossible for an
attacker to make it point at code injected into the process,
since injection of data only can be done into the stack, the
heap, the BSS, or the data segment.

StackShield adds checking code before all function calls
that make use of function pointers. A global variable is
then declared in the data segment and its address is used as
a boundary value. The checking function ensures that any
function pointer about to be dereferenced points to mem-
ory below the address of the global boundary variable. If it
points above the boundary the process is terminated. This
protection will give false positives if the program uses dy-
namically allocated function pointers.



Another defense against buffer overflows presented by Arash
Baratloo et al [4] is Libsafe. This tool actually provides
a combination of static and dynamic intrusion prevention.
Statically it patches library functions in C that constitute
potential buffer overflow vulnerabilities. A range check is
made before the actual function call which ensures that the
return address and the base pointer cannot be overwritten.
Further protection has been provided [5] with Libverify us-
ing a similar dynamic approach to StackGuard.

The key idea behind Libsafe is to estimate a safe boundary
for buffers on the stack at run-time and then check this
boundary before any vulnerable function is allowed to write
to the buffer.
As a boundary value Libsafe uses the old base pointer

pushed onto the stack after the return address. No lo-
cal variable should be allowed to expand further down the
stack than the beginning of the old base pointer. In this
way a stack-based buffer overflow cannot overwrite the re-
turn address. This boundary is enforced by overloading
strcpy(), strcat(), getwd(), gets(), [vf]scanf(), realpath(),
and [v]sprintf() with wrapping functions. These wrappers
first compute the length of the input as well as the allowed
buffer size (i.e. from the buffer’s starting point to the old
base pointer) and then performs a boundary check. If the
input is within the boundary the original functionality is
carried out. If not the wrapper writes an alert to the sys-
tem’s log file and then halts the program. Observe that
overflows within the local variables on the stack, such as
function pointers, are not stopped.

Libverify is an enhancement of Libsafe, implementing re-
turn address verification similar to StackShield. However,
since this is a library it does not require recompilation of
the software. As with Libsafe the library is pre-loaded and
linked to any program running on the system. The key idea
behind Libverify is to alter all functions in a process so that
the first thing done in every function is to copy the return
address onto a canary stack located on the heap, and the last
thing done before returning is to verify the return address
by comparing it with the address saved on the canary stack.
If the return address is still correct the process is allowed
to continue executing. However, if the return address does
not match the saved copy, execution is halted and a secu-
rity alert is raised. Libverify does not protect the integrity
of the canary stack. They propose protecting it with mpro-

tect() like Return Address Defender, RAD [13]. However,
as in the RAD case this will most probably impose a serious
performance penalty.
To be able to do this, Libverify has to transform the code

of a given program. First each function is copied whole to
the heap (requires executable heap) where it can be altered.
Then the saving and verifying of the return address is in-
jected into each function by overwriting the first instruction
with a call to wrapper_entry and all return instructions with
a call to wrapper_exit. The need for copying the code to
the heap is due to the Intel CPU architecture. On other
platforms this could be solved without copying the code [5].
Libverify is needed to give a more complete protection of the
return address since Libsafe only addresses standard C li-

brary functions (as pointed out by Istvan Simon [41]). With
Libsafe vulnerabilities could still occur where the program-
mer has implemented his/her own memory handling.

Avijit, Gupta and Gupta continued the work by Barat-
loo et al by implementing LibsafePlus and TIED [3, 2].
TIED collects static information and LibsafePlus collects dy-
namic information about the sizes of stack and heap buffers.
This information is used runtime to ensure that no character
buffers are written past their limit.

Static buffer sizes are collected compile-time by exploiting
debugging information produced by a specific compiler op-
tion. Dynamic buffer size information is collected runtime
by interception of calls to malloc() and free(). Finally,
the original technique with wrappers for dynamically linked
libraries handling strings is used to check the bounds. Their
main contributions are a more precise boundary check of
stack buffers than the previous solution, and a boundary
check of heap buffers.

Ruwase and Lam continued Jones’ and Kelly’s boundary
checking work and have implemented a GCC patch called
“CRED”, C Range Error Detector [37]. Their goals were
for the runtime checks to impose less overhead and provide
better compatibility. To enhance performance they only per-
form boundary checks on string buffers since they consider
such buffers the most likely ones vulnerable to security at-
tacks. With such a restriction most of the programs they
tested suffered less than 26 % overhead. Worst case was a
string-intensive email program which suffered 130 % over-
head.

Compatibility was solved by storing out-of-bounds pointer
values in so called out-of-bounds objects. If pointer arith-
metics using the out-of-bounds pointer results in an in-bounds
address the pointer is sanitized. All variables with a memory
range such as arrays and structs get an associated referent
object that keeps of pointer arithmetic and bounds. Pointer
operations that reference memory outside the referent ob-
ject are illegal. CRED allows out-of-bounds references to be
part of arithmetic as long as the resulting access is within
bounds.

We have evaluated the buffer overflow prevention tech-
niques used in Ubuntu 9.10 “Karmic” [33] which has several
security features [34] relevant to buffer overflow prevention.

Ubuntu 9.10 has five ASLR (Address Space Layout Ran-
domization) features, four enabled by default—Stack ASLR,
Libs/mmap ASLR, Exec ASLR, brk ASLR, and VDSO ASLR
[34].

The fundamentals of defeating ASLR have been studied
by Schacham et al [39]. Attackers may reduce the entropy
present in a randomized address space by leaking informa-
tion via format string attacks [20], buffer over-reads [45] or
covering multiple bits of entropy per attack by using heap
spraying, introduced by Hassell and Permeh [24]. RIPE does
not use brute force, information leakage, or heap spraying
to circumvent ASLR. While such attack methods are inter-



esting, RIPE currently focusses on evaluating countermea-
sures performing attack detection or active prevention, not
on countermeasures making attacks harder. RIPE calculates
its offsets and target addresses at runtime and thus has in-
formation available after randomization. The effects of this
decision are discussed in detail in Section 8.

Most modern CPUs protect against executing non-executable
memory regions (heap, stack, etc), known either as Non-
eXecute (NX) or eXecute-Disable (XD) [52]. This protec-
tion reduces the areas an attacker can use to perform arbi-
trary code execution. It requires that the kernel uses PAE,
Physical Address Extension. Ubuntu 9.10, partially emu-
lates this protection for processors lacking NX when running
on a 32bit kernel. Our evaluation runs where performed on
a machine with an Intel Core 2 Duo processor with XD sup-
port enabled.

Ubuntu 9.10 ships with a patched gcc using -fstack-

protector by default. This protection is ProPolice, pre-
sented in section 5.1. RIPE was compiled with this gcc for
the Ubuntu 9.10 evaluation.

In this section, we present the summary of our empirical
evaluation of the protection tools and techniques presented
in section 5. We then continue with detailed evaluation re-
sults for the top four. Full log files and test results will be
published online when the study is presented. The summary
of the empirical evaluation is presented in table 1. Our base-
case is Ubuntu 6.06, a Linux distribution released in 2006
with no countermeasures against code-injection attacks.

ProPolice is totally focused on protecting the stack and is
successful in doing so for direct, stack-based buffer overflows
except for structs with a buffer and function pointer. Also
indirect, stack-based attacks are prevented because of the
re-arranging of character buffers.
On the heap, BSS, and data segment ProPolice does not

add any protective countermeasures so direct or indirect,
heap/BSS/data-based attacks targeting any of the code point-
ers and abusing any of the functions will be successful. Indi-
rect, heap/BSS/data-based attacks against longjmp buffers
as stack variables or function parameters were not fully sta-
ble and thus categorized as partly successful.

Libsafe’s basic protection scheme is wrapping library func-
tions (see list in section 5.3.1. This means that the only sta-
ble, successful attack forms were the ones abusing memcpy()

and RIPE’s “homebrew” memcpy equivalent since they are
not wrapped.
Direct and indirect, stack/heap/BSS/data-based attacks

targeting all code pointers are successful as long as they
abuse memcpy() or RIPE’s “homebrew”memcpy equivalent.
snprintf(), sscanf(), strncpy(), strncat(), sscanf(),

strcpy(), strcat(), fscanf(), and sprintf() all were suc-
cessfully abused a few times and therefore categorized as
partly successful. Those partly successful attacks forms were

spread across almost all other variables—direct and indi-
rect, stack/BSS/data segment, injected code and return-
into-libc and targeting return pointer, longjmp buffers, func-
tion pointers, old base pointer and structs.

CRED fails to prevent direct and indirect, stack/BSS/data-
based overflows toward function pointers, longjmp buffers,
and structs for the library functions sprintf(), snprintf(),
sscanf(), and fscanf(). The attacks against structs are
also successful for memcpy() and homebrew memcpy equiv-
alent and are the only attacks successful from buffers on the
heap. The exception to the above is indirect attacks from
the BSS and data segments targeting a longjmp buffer as
stack variable. There was some instability in those attacks
and therefore they were categorized as partly successful.

Ubuntu 9.10 with non-executable memory and stack pro-
tection scored the best in our evaluation. All attack forms
that involved the injection of new code in a process’ address
space failed, due to the policy that a memory page can be
either writable, or executable but not both. Also, any at-
tack against the return address of a function was blocked
due to the presence of a canary and the re-ordering of vari-
ables done by ProPolice. Strackx et. al [45] have shown
cases where an attack against the stack is possible even in
the presence of canary-based countermeasures, however we
decided not to include such an attack in the current version.

All struct attack forms were successful meaning all loca-
tions and all abused functions worked, verifying the limita-
tions of ProPolice. Additionally all direct attacks against
function pointers on the heap and the data segment were
successful. Indirect attacks against the old base pointer
works in general on the heap, BSS, and data segment for
memcpy(), strcpy(), strncpy(), sprintf(), snprintf(),
strcat(), strncat(), sscanf(), fscanf(), and homebrew
memcpy equivalent. But there were some instability for 10
of those combinations.

The testbed execution for StackShield strangely claims
only 1810 impossible attack forms whereas all the others
say 2990. We figure this is because of StackShield’s trans-
formations and have manually removed the missing 1180 im-
possible attack forms from StackShield’s failed attacks since
successful and partly successful attacks are obviously pos-
sible. If in fact StackShield’s transformation makes 1180
extra attack forms possible, that means an increased attack
surface and not enhanced protection.

RIPE is a synthesized testbed, deliberately vulnerable,
and a program with the sole purpose of conducting attacks
against itself and recording their success or failure. Com-
pared to real-world code testbeds, RIPE offers no evaluation
of scalability, complexity, or performance. We see merits in
both approaches—the main one for synthesized testbeds be-
ing the possibility to enumerate and combine attack forms
to provide good coverage.



Setup Overall ef-
fectiveness

Successful
attacks

Partly
successful attacks

Failed
attacks

Ubuntu 6.06 (no protection) 0% 838 (99%) 12 (1%) 0 (0%)
Libsafe (lib wrapper) 7% 777 (91%) 16 (2%) 57 (7%)
LibsafePlus (lib wrapper) 19% 669 (79%) 16 (2%) 165 (19%)
StackShield (copy & check) 36% 533 (63%) 7 (1%) 310 (36%)
ProPolice (canary-based) 40% 501 (59%) 9 (1%) 340 (40%)
LibsafePlus+TIED (lib wrapper) 77% 170 (20%) 23 (3%) 657 (77%)
CRED (boundary checking) 79% 172 (20%) 4 (0.5%) 674 (79%)
Non-exec + stack prot (Ubuntu 9.10) 89% 80 (9%) 10 (1%) 760 (89%)

Table 1: Summary of empirical evaluation results using RIPE’s 850 buffer overflow attack forms. Overall
effectiveness is the percentage of attack forms prevented. Successful attacks give repeatable arbitrary code
execution. Partly successful attacks are sometimes successful, sometimes not and in general less stable. Failed
attacks are repeatably prevented.

The kind of evaluation RIPE provides is susceptible to
both false negatives and manipulation. An evaluated tool
can prevent RIPE’s implementation of a given attack form
but still allow for exploitations of such attack forms in gen-
eral. RIPE only provides one vulnerability and matching
payload for each of the 850 attack forms, whereas in theory
there are infinite variations of both. Such a case could be
interpreted as a false negative. Therefore, evaluation results
should be interpreted as an upper bound on the preventive
effectiveness for the RIPE attack forms—there might be fur-
ther successful attack forms among the 850.
Further more, researchers could inspect or observe the

specifics of how RIPE implements certain attack forms and
adjust their countermeasures to prevent exactly those at-
tacks. While this could be based on bad intentions and ef-
fectively be result manipulation, it doesn’t have to be. Such
RIPE-specific prevention might evolve over time when fine
tuning to give good evaluation results. Therefore, care has
to be taken when comparing RIPE evaluation outcomes be-
tween countermeasures. We believe that it is in every re-
searcher’s own interest to use RIPE to evaluate fairly and
since RIPE is free software any necessary testbed augments
can be implemented and published.

Pincus and Baker present an overview of recent advances
in exploitation of buffer overflows [32]. Their main conclu-
sion is that often heard assumptions about buffer overflows
are not true—buffer overflows do not all inject code, do not
all target the return address, and do not all abuse buffers
on the stack. The article briefly discusses (1) injection of
attack parameters instead of attack code, (2) attacks tar-
geting function pointers, data pointers, exception handlers,
and pointers to virtual function tables in C++, and (3) heap-
based overflows.
Michael Zhivich et al published“Dynamic Buffer Overflow

Detection” in 2005 [54]. They use a collection of 55 small,
synthesized C programs that contain buffer overflows to eval-
uate. They have several “dimensions” in their testbed. They
differentiate between discrete overflows of up to 8 bytes of
memory, and continuous overflows resulting from multiple
consecutive writes. They have several buffer types—char,
int, float, func *, and char * and they are spread in the
same four memory locations as we have; stack, heap, BSS,

and data segment. They have buffers in struct, array, union,
and array of structs. Lib functions they abuse are (f)gets,
(fs)scanf, fread, fwrite, sprintf, str(n)cpy, str(n)cat,
and memcpy. An attack is judged as prevented if it’s detected
or if a segmentation fault occurs. The top performing tools
in their study are Insure++, CCured and CRED. They also
evaluate the tools against approximately 100 line models
of fourteen historic vulnerabilities in bind, sendmail, and
wu-ftpd. CCured, CRED, and TinyCC came out on top,
detecting about 90% of the overflows. Unfortunately their
testbed is not available which means their study cannot be
repeated and their test cases cannot be used for future evalu-
ations. Also they do not try all possible attack combinations
nor publish exactly which buffer overflows worked and which
didn’t. In contrast, RIPE is meant to be a publicly available
evaluator which researchers can use to report and compare
the coverage of their security mechanisms against a large
but well-defined set of real-world attacks.

As mentioned in previous sections, RIPE is a process that
attacks itself and then checks the success or failure of the
launched attacks. Due to the fact that the attack code is
part of the vulnerable process, any countermeasures relying
on the secrecy of memory locations are defeated since RIPE
has access to the addresses of both the overflowing buffer and
the target. RIPE could be extended with a save/load off-
sets feature allowing offsets from one execution to be used
in a subsequent run. This would allow the evaluation of
countermeasures that rely on memory randomization such
as ASLR or DieHard [6] and DieHarder [31]. Heap spray-
ing and information leakage attacks could also be added to
“assist” an attacker in de-randomizing certain countermea-
sures. We are also currently considering the addition of non-
control data attacks [12] which would allow for evaluation
of countermeasures such as data space randomization[7] and
ValueGuard [48].

Even though hundreds of papers have been published on
the problem of buffer overflows and code injection attacks,
modern software still is plagued by improper checking of user
input attesting to the fact that this is still an open research
problem. In this paper we presented RIPE, a Runtime In-
trusion Prevention Evaluator which executes a total of 850



buffer-overflow attacks against popular defense mechanisms.
The main purpose of RIPE is to provide a freely available
testbed which developers of defense mechanisms can use to
quantify the security coverage of their proposals and com-
pare themselves against previous work using a well-defined
and real-world set of attacks.

This research is partially funded by the national computer
graduate school in computer science (CUGS) commissioned
by the Swedish government, the board of education and the
Interuniversity Attraction Poles Programme Belgian State,
Belgian Science Policy, the IBBT and the Research Fund
K.U.Leuven.
Initial parts of the testbed extensions were built by Pontus

Viking as part of his Master’s Thesis [51].
We are grateful to the readers who have previewed and

improved our paper, especially Martin Johns.

RIPE is free software released under the MIT licence and
available on GitHub: https://github.com/johnwilander/

RIPE

[1] Akritidis, P., Markatos, E., Polychronakis, M.,

and Anagnostakis, K. Stride: Polymorphic sled
detection through instruction sequence analysis. In
Security and Privacy in the Age of Ubiquitous
Computing, R. Sasaki, S. Qing, E. Okamoto, and
H. Yoshiura, Eds., vol. 181 of IFIP Advances in
Information and Communication Technology. Springer
Boston, 2005, pp. 375–391.

[2] Avijit, K., Gupta, P., and Gupta, D. Tied,
libsafeplus: Tools for runtime buffer overflow
protection. In Proceedings of The 13th USENIX
Security Symposium (San Diego, USA, August 2004),
pp. 45–56.

[3] Avijit, K., Gupta, P., and Gupta, D. Binary
rewriting and call interception for efficient runtime
protection against buffer overflows: Research articles.
Softw. Pract. Exper. 36 (July 2006), 971–998.

[4] Baratloo, A., Singh, N., and Tsai, T. Libsafe:
Protecting critical elements of stacks. White Paper
http:

//www.research.avayalabs.com/project/libsafe/,
December 1999.

[5] Baratloo, A., Singh, N., and Tsai, T.

Transparent run-time defense against stack smashing
attacks. In Proceedings of the 2000 USENIX Technical
Conference (San Diego, California, USA, June 2000).

[6] Berger, E. D., and Zorn, B. G. Diehard:
probabilistic memory safety for unsafe languages. In
Proceedings of the 2006 conference on Programming
language design and implementation (Ottawa, ON,
2006), ACM Press, pp. 158–168.

[7] Bhatkar, S., and Sekar, R. Data space
randomization. In Proceedings of the 5th international
conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA ’08) (July
2008).

[8] Blazakis, D. Interpreter Exploitation: Pointer
Inference and JIT Spraying. In BlackHat DC (2010).

[9] Bray, B. Compiler security checks in depth.
http://msdn.microsoft.com/en-us/library/

aa290051(v=vs.71).aspx, February 2002.

[10] Bulba, and Kil3r. Bypassing StackGuard and
StackShield. Phrack Magazine Volume 10, Issue 56
http://www.phrack.org/phrack/56/p56-0x05, May
2000.

[11] Castro, M. Securing software by enforcing data-flow
integrity. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (2006),
pp. 147–160.

[12] Chen, S., Xu, J., Sezer, E. C., Gauriar, P., and

Iyer, R. K. Non-control-data attacks are realistic
threats. In 14th USENIX Security Symposium (2005).

[13] cker Chiueh, T., and Hsu, F.-H. RAD: A
compile-time solution to buffer overflow attacks. In
Proceedings of the 21th International Conference on
Distributed Computing Systems (ICDCS) (Phoenix,
Arizona, USA, April 2001).

[14] Clause, J., Li, W., and Orso, R. Dytan: A generic
dynamic taint analysis framework. In Proceedings of
the International Symposium on Software Testing and
Analysis (2007), pp. 196–206.

[15] Costa, M., Crowcroft, J., Castro, M., and

Rowstron, A. Can we contain internet worms? In
Proceedings of Third Workshop on Hot Topics in
Networks, HotNets-III (San Diego, CA USA,
November 2004).

[16] Costa, M., Crowcroft, J., Castro, M.,

Rowstron, A., Zhou, L., Zhang, L., and Barham,

P. Vigilante: End-to-end containment of internet
worms. In Proceedings of the Symposium on Systems
and Operating Systems Principles (SOSP) (2005),
pp. 133–147.

[17] Cowan, C., Beattie, S., Day, R. F., Pu, C.,

Wagle, P., and Walthinsen, E. Protecting systems
from stack smashing attacks with StackGuard. Linux
Expo http://www.cse.ogi.edu/~crispin/, May
1999.

[18] Cowan, C., Pu, C., Maier, D., Walpole, J.,

Bakke, P., Beattie, S., Grier, A., Wagle, P.,

Zhang, Q., and Hinton, H. StackGuard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security
Conference (San Antonio, Texas, January 1998),
pp. 63–78.

[19] Designer, S. Linux kernel patch from the openwall
project. http://www.openwall.com/linux/README.

[20] Durden, T. Bypassing pax aslr protection. http:
//www.phrack.com/issues.html?issue=59&id=9, July
2002.

[21] Etoh, H. GCC extension for protecting applications
from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/,
June 2000.

[22] Gajdos, P., and Kornacker, C. Cve-2009-4035
xpdf: buffer overflow in fofitype1. https:
//bugzilla.redhat.com/show_bug.cgi?id=541614,
December 2009.

[23] grsecurity. Pax. http://pax.grsecurity.net/.



[24] Hassell, R., and Permeh, R. Microsoft internet
information services remote buffer overflow.
http://www.eeye.com/Resources/Security-Center/

Research/Security-Advisories/AD20010618, 6 2001.

[25] Howard, M. Evils of strncat and strncpy - answers.
http://blogs.msdn.com/b/michael_howard/

archive/2004/12/10/279639.aspx, December 2004.

[26] Jones, R., and Kelly, P. Backwards-compatible
bounds checking for arrays and pointers in C
programs. In Proceedings of the Third International
Workshop on Automatic Debugging AADEBUG’97
(1997).

[27] Kc, G. S., Keromytis, A. D., and Prevelakis, V.

Countering code-injection attacks with instruction-set
randomization. In Proceedings of The 10th ACM
Conference on Computer and Communications
Security (Washington D.C., USA, 2003), pp. 272–280.

[28] Moore, D., Paxson, V., Savage, S., Shannon, C.,

Staniford, S., and Weaver, N. Inside the slammer
worm. IEEE Security and Privacy 1, 4 (2003), 33–39.

[29] Moore, D., Shannon, C., and claffy, k.

Code-red: a case study on the spread and victims of
an internet worm. In 2nd ACM Workshop on Internet
measurment (2002).

[30] Nebenzahl, D., and Wool, A. Install-time
vaccination of windows executables to defend against
stacksmashing attacks. In Proceedings of The 19th
IFIP International Information Security Conference
(2004).

[31] Novark, G., and Berger, E. D. Dieharder: securing
the heap. In Proceedings of the 17th ACM conference
on Computer and communications security (New
York, NY, USA, 2010), CCS ’10, ACM, pp. 573–584.

[32] Pincus, J., and Baker, B. Beyond stack smashing:
Recent advances in exploiting buffer overruns. IEEE
Security and Privacy 2, 4 (2004), 20–27.

[33] Project, T. U. Ubuntu 9.10 karmic.
http://releases.ubuntu.com/karmic/.

[34] Project, T. U. Ubuntu security feature matrix.
https://wiki.ubuntu.com/Security/Features.

[35] Qin, F., Wang, C., Li, Z., seop Kim, H., Zhou, Y.,

and Wu, Y. Lift: A low-overhead practical
information flow tracking system for detecting security
attacks. Microarchitecture, IEEE/ACM International
Symposium on 0 (2006), 135–148.

[36] Robertson, W., Kruegel, C., Mutz, D., and

Valeur, F. Run-time detection of heap-based
overflows. In Proceedings of The 17th Large
Installation Systems Administration Conference (San
Diego, USA, October 2003).

[37] Ruwase, O., and Lam, M. S. A practical dynamic
buffer overflow detector. In Proceedings of The 11th
Annual Network and Distributed System Security
Symposium (San Diego, USA, February 2004).

[38] Shacham, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of CCS 2007 (Oct. 2007),
S. De Capitani di Vimercati and P. Syverson, Eds.,
ACM Press, pp. 552–61.

[39] Shacham, H., Page, M., Pfaff, B., Goh, E.-J.,

Modadugu, N., and Boneh, D. On the effectiveness
of address-space randomization. In Proceedings of the

11th ACM conference on Computer and
communications security, CCS ’04 (2004).

[40] Sidiroglou, S., and Keromytis, A. D. Countering
network worms through automatic patch generation.
Security & Privacy, IEEE 3, 6 (November–December
2005), 41–49.

[41] Simon, I. A comparative analysis of methods of
defense against buffer overflow attacks. http://www.
mcs.csuhayward.edu/~simon/security/boflo.html,
January 2001.

[42] Smirnov, A., and cker Chiueh, T. Dira:
Automatic detection, identification, and repair of
control-hijacking attacks. In Proceedings of The 12th
Annual Network and Distributed System Security
Symposium (2005).

[43] Spafford, E. H., and Spafford, E. H. The internet
worm program: An analysis. Computer
Communication Review 19 (1988).

[44] SPEC - Standard Performance Evaluation
Corporation. http://www.spec.org/.

[45] Strackx, R., Younan, Y., Philippaerts, P.,

Piessens, F., Lachmund, S., and Walter, T.

Breaking the memory secrecy assumption. In 2nd
European Workshop on System Security (2009).

[46] Tuck, N., Calder, B., and Varghese, G.

Hardware and binary modification support for code
pointer protection from buffer overflow. In Proceedings
of the 37th Intl Symposium on Microarchitecture,
MICRO 04 (2004), pp. 209–220.

[47] US-CERT. Vulnerability notes database.
http://www.kb.cert.org/vuls.

[48] Van Acker, S., Nikiforakis, N., Philippaerts, P.,

Younan, Y., and Piessens, F. Valueguard:
Protection of native applications against data-only
buffer overflows. In Proceedings of the Sixth
International Conference on Information Systems
Security (ICISS) (2010).

[49] van de Ven, A., and Molnar, I. Execshield.
http://people.redhat.com/mingo/exec-shield/

docs/WHP0006US_Execshield.pdf.

[50] Vendicator. Stack Shield technical info file v0.7.
http://www.angelfire.com/sk/stackshield/,
January 2001.

[51] Viking, P. Comparison of dynamic buffer overflow
protection tools. Master’s thesis, Linkopings
universitet, February 2006.

[52] Wikipedia. Wikipedia, nx bit.
http://en.wikipedia.org/wiki/NX_bit.

[53] Wilander, J., and Kamkar, M. A comparative
study of publicly available tools for dynamic buffer
overflow prevention. In Proceedings of the 10th
Network & Distributed System Security Symposium
(San Diego, California, February 2003).

[54] Zhivich, M., Leek, T., and Lippmann, R. Dynamic
buffer overflow detection. Workshop on the Evaluation
of Software Defect Detection Tools, co-located with
PLDI 2005
http://ewww.cs.umd.edu/~pugh/BugWorkshop05/,
June 2005.


