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Abstract usually contain the abstractions that the run-time environ-
ment relies on to execute the program. Therefore we should
This paper proposes a methodology to develop coun-strive to protect the entire execution environment from at-
termeasures against code injection attacks, and validatestacks. In this paper we will discuss an approach to protect
the methodology by working out a specific countermeasure.the run-time environment. We have defined a model of the
This methodology is based on modeling the execution envitun-time environment of the program for the Intel Architec-
ronment of a program. Such a model is then used to build ture for 32-bit [18] with GNU/Linux as the operating sys-
countermeasures. The paper justifies the need for a moretem and the GNU Compiler Collection [17] as the compiler
structured approach to protect programs against code injec- for the languages C and C++. This model was then used
tion attacks: we examine advanced techniques for injectingto assess which memory locations besides the traditional
code into C and C++ programs and we discuss state-of- return address could be attacked. The advantage of using
the-art (often ad hoc) approaches that typically protect sin- such models to design countermeasures is that a counter-
gular memory locations. We validate our methodology by measure designer can work at a higher level of abstraction
building countermeasures that prevent attacks by protect-which reduces the effort needed to define and evaluate a
ing a broad variety of memory locations that may be used specific countermeasure. Such a model will also allow us to
by attackers to perform code injections. The paper evalu- compare the effectiveness of countermeasures more easily,
ates our approach and discusses ongoing and future work. allowing one to select a countermeasure that better suits a
particular context.
The rest of the paper is structured as follows: section
Keywords: Advanced exploitation techniques, buffer over- 2 discusses the advanced techniques besides stack-based
flows, C, C++, code injection, countermeasures buffer overflows that are being used to attack programs.
Section 3 describes the countermeasures we built using our
methodology and describes the approach taken when build-
ing the machine model. Section 4 discusses our approach

and describes our future work, while section 5 examines
Standard stack-based buffer overflows, where an attackegyisting countermeasures. Finally, section 6 presents our

overwrites the return address on the stack by writing out- -gnclusion.

side the bounds of an array, have become a well-understood

problem and many programmers are producing code that L )

is more resilient towards buffer overflows or are apply- 2 Advanced exploitation techniques

ing countermeasures that make using standard exploitation

techniques harder. As a result, attackers are turning to more This section covers some more advanced techniques

sophisticated techniques (e.g. indirect attacks) and are usused by attackers to inject code into an application. We

ing new vulnerabilities to inject code into a program. These describe them here in detail as they are important to demon-

trends demonstrate the need for a more structured approachktrate how they can be used to bypass countermeasures.

when building attack prevention countermeasures. This demonstrates the need for the more methodical ap-
The memory locations that are generally abused by at-proach that we describe in section 3. We have divided the

tackers to gain control over the execution flow of a program attacks in different subcategories, we start by describing in-

1 Introduction



direct attacks in section 2.1. These require an intermediates later dereferenced for writing, it will overwrite the target
step to be exploited (e.g. overwriting a data pointer to a memory location. This technique is illustrated in Figure 1.
different memory location). In section 2.2 we discuss regu-  The overflow is used to overwrite a local variablefbf
lar buffer overflows in the data and bss sections of memory, holding the pointer tovaluel The pointer is changed to
which also require an attack technique different from the point to the return address instead of pointingatuel(see
one used for regular stack-based overflows. Finally, sectiondotted line 1). If the pointer is then dereferenced and the
2.3 describes format string vulnerabilities and how they can value it points to is changed at some point in the function
be used by attackers to perform code injection attacks. f1 to a value specified by attackers, they can then use it to
As we do for the machine model and countermea- change the return address to a value of their choosing.
sures of section 3, we focus on the 1A32 architecture with  Although in our example we illustrate this technique by
GNU/Linux as operating system and the GNU Compiler overwriting the return address, indirect pointer overwriting
Collection as compiler for illustrating the attack techniques can be used to overwrite arbitrary memory locations: any
in this section. As such, all pointers and integer memory pointer to code that will later be executed could be interest-
locations that are mentioned here are four bytes large. ing for an attacker to overwrite.

2.1 Indirect attacks 2.1.2 Exploiting heap-based overflows

Indirect attacks are attacks where the attackers do not
or can not reach their objective immediately (i.e. gaining Heap memory is dynamically allocated at run-time by the
control over the execution-flow) but need an intermediate application. As is the case with stack-based arrays, ar-
step to achieve their goals. This intermediate step usuallyrays contained on the heap can, in most implementations,
manifests itself in the overwriting of the memory location be overflowed too. The technique for overflowing is simi-
that some pointer refers to with the target memory location. lar except that the heap grows upwards in memory instead
When the pointer is later dereferenced for writing, the target of downwards. In contrast to stack-based buffer overflows,
location will be overwritten. This type of attack can be fur- no return addresses are stored in this segment of memory
ther divided into several subcategories. In section 2.1.1 weso an attacker must use other techniques to gain control of
describe indirect pointer overwriting, where a data pointer the execution-flow. An attacker could of course overwrite a
is modified by a buffer overflow and made to point to a dif- function pointer or perform an indirect pointer overwrite on
ferent location. Section 2.1.2 discusses a closely related atpointers stored in these memory regions, but these are not
tack: a heap-based buffer overflow is used to overwrite thealways available.
memory management information of the dynamic memory  Overwriting the memory management information that
allocator, which in turn can be used to overwrite arbitrary is generally associated with a dynamically allocated chunk
memory locations. Section 2.1.3 describes another indirect[2, 6,22, 44] is a more general way of attempting to exploit
attack on the dynamic memory allocator, when memory is a heap-based overflow.
deallocated multiple times, attackers could again overwrite  We will demonstrate how these dynamic memory allo-
the memory management information, resulting in the over- cators can be attacked by focusing on a specific implemen-
writing of arbitrary memory locations. Integer errors, dis- tation of a dynamic memory allocator calldtinalloc[29].
cussed in section 2.1.4 are a different kind of vulnerability: While dimalloc is used as a basis for the allocator in the
they are not exploitable by themselves but could result in a GNU/Linux operating system, these techniques could also
buffer overflow. be applied to similar allocators used in other operating sys-
tems. We will describallmalloc briefly and will demon-
strate how an attacker can manipulate the application into
overwriting arbitrary memory locations by overwriting the
allocator's memory management information.
If the return address on the stack is protected by a coun- Thedlmalloclibrary is a run-time memory allocator that
termeasure (like StackGuard [13], which places a randomdivides the heap memory at its disposal into contiguous
value before the return address and on return checks if thechunks, which vary in size as the various allocation rou-
random value is unchanged), an attacker still might be abletines fnalloc free realloc, ...) are called. An invariant
to exploit a stack-based buffer overflow vulnerability by us- is that a free chunk never borders another free chunk when
ing indirect pointer overwriting [10]. The attacker over- one of these routines has completed: if two free chunks had
writes a data pointer to which attacker-controlled data will bordered, they would have been coalesced into one larger
be written (e.g., a copy of a user-inputted string) and makesfree chunk. These free chunks are kept in a doubly linked
it point to the target memory location. When the pointer list, sorted by size. When the memory allocator at a later

2.1.1 Indirect Pointer Overwriting
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Figure 1. Stack-based buffer overflow using indirect pointer overwriting: full lines indicate normal
state, dotted lines are changes due to the overwriting

time requests a chunk of the same size as one of these free Figure 3 shows what could happen if an array that is lo-

chunks, the first chunk of that size in the list will be re- cated inchunklis overflowed: an attacker has overwritten

moved from the list and will be made available for use in the management information @ehunk2 The size fields

the program (i.e. it will turn into an allocated chunk). are left unchanged (although these could be modified if
All memory management information (including this list needed). The forward pointer has been changed to point to

of free chunks) is stored in-band. That is, the information 12 bytes before the return address and the backward pointer

is stored in the chunks: when a chunk is freed the mem-has been changed to point to code that will jump over the

ory normally allocated for data is used to store a forward next few bytes. Whechunklis subsequently freed, it will

and backward pointer). Figure 2 illustrates what a heap of be coalesced together with chunk?2 into a larger chunk. As

used and unused chunks could look likéhunklis an al- chunk2will no longer be a separate chunk after the coalesc-

located chunk containing information about the size of the ing it must first be removed from the list of free chunks.

chunk stored before it and its own slzeThe rest of the  Theunlink macro takes care of this: internally a free chunk

chunk is available for the program to write data@hunk?2 is represented by a struct containing the following unsigned

represents a free chunk that is located in a doubly linkedlong integer fields (in this orderprev size size fd andbk.

list together withchunk3and chunk4 Chunk3is the first A chunk is unlinked as follows:

chunk in the chain: its backward pointer pointsctaunk?2

and its forward pointer points to a previous chunk in the chunk2—>fd—>bk = chunkz=>bk

list. Chunk2is the next chunk, with its forward pointer Cchunk2—>bk—fd = chunk2-fd

pointing to chur.1k3and Its backvyard pointer p0|_nt|ng 0 \Which is the same as (based on the struct used to represent

chunk4 Chunkdis the last chunk in our example: its back- malloc chunks):

ward pointer points to a next chunk in the list and its forward

pointer points tachunk2 x(chunk2—>fd +12) = chunk2>bk

x(chunk2—>bk+8) = chunk2->fd

1The size of allocated chunks is always a multiple of eight, so the three

least significant bits of the size field are used for management information:AS a result. the value of the memory location that is twelve
a bit to indicate if the previous chunk is in use or not and one to indicate if !

the memory is mapped or not. The last bit is currently unused. The "pre- bytes after the location théd points to will be overwrittep
vious chunk in use™-bit can be modified by an attacker to force coalescing With the value ofok, and the value of the memory location
of czhunks. How this poalescing can be abl_Jsed is explair_led Iater_. _ eight bytes after the location thak points to will be over-
T_he representation cd’nun’k2|s not e’ntlrely correct: |i:hunk1!s in written with the value ofd. So in the example in Figure
use, it will be used to store 'user data’ fohunkland not the size of . . ;
chunkl We have chosen to represaiitunk2this way as this detail is 3 the return address would be overwritten with a pointer to

not relevant to the discussion. code that will jump over the place whefe will be stored
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Figure 3. Heap-based buffer overflow




and will execute code that the attacker has injected. How-chunk2->fd = chunk) will be set as the forward pointer
ever, since the eight bytes after the memory that bk pointsfor new.chunk The backward pointer of the forward pointer
to will be overwritten with a pointer to fd (illustrated as (i.e. chunk®>bK) will be set tonew chunkand the forward
dummy in Figure 3), the attacker needs to insert code topointer of the backward pointectfunk2->fd) will be set to
jump over the first twelve bytes into the first eight bytes of newchunk

his injected code. As with indirect pointer overwriting (see If chunk2 would be freed twice the following would hap-
section 2.1.1), this technique can be used to overwrite arbi-pen (substitutions made on the code listed above):

trary memory locations.

BK = chunk2
FD = chunk2—>fd

2.1.3 Exploiting dangling pointer references chunk2->bk = chunk2
chunk2—>fd = chunk2—>fd
A pointer to a memory location could refer to a memory lo- ¢hunk2=>fd—>bk = chunk2->fd = chunk2

cation that has been deallocated either explicitly by the pro-  The forward and backward pointersafunk2both point
grammer (e.g., by calling free) or by code generated by theto itself. The dotted lines in Figure 4 illustrate what the list

compiler (e.g., a function epilogue, where the stackframe of of free chunks looks like after a second freechfink2
the function is removed from the stack). Dereferencing of
chunk2—fd—>bk = chunk2>bk

this pointer is generally unchecked in a C compiler, causing
the dangling pointer reference to become a problem. In nor-chunk2—=>bk—>fd = chunk2->fd
mal cases this would cause the program to crash or exhibit But since bothchunk2->fd and chunk2->bk point to
uncontrolled behavior as the value could have been change@&hunk2 it will again point to itself and will not really be
at any place in the program. unlinked. However the allocator assumes it has and the pro-
However, double free vulnerabilities are a specific ver- gram is now free to use the user data part (everything below
sion of the dangling pointer reference problem that could 'size of chunk’ in Figure 4) of the chunk for its own use.
lead to exploitation. A double free vulnerability occurs Attackers can now use the same technique that we pre-
when already freed memory is deallocated a second timewviously discussed to exploit the heap-based overflow (see
This could again allow an attacker to overwrite arbitrary Figure 3): they set the forward pointer to point 12 bytes
memory locations [14]. before the return address and change the value of the back-
We illustrate this using dimalloc in Figure 4. The full ward pointer to point to code that will jump over the bytes
lines in this figure are an example of what the list of free that will be overwritten. When the program tries to allocate
chunks of memory might look like when using thinalloc  a chunk of the same size again (or tries to free this one),
memory allocator.Chunklis bigger than thehunk2and it will again try to unlink chunk2which will overwrite the
chunk3(which are both the same size), meaning timaink2 return address with the value afiunk2'sbackward pointer.
is the first chunk in the list of free chunks of equal size.
When a new chunk of the same sizechsink2is freed, it
is placed at the beginning of this list of chunks of the same
size by modifying the backward pointer dfiunkland the
forward pointer ofchunk2 Integer errors are not exploitable vulnerabilities by them-
When a chunk is freed twice it will overwrite the for- Selves, but exploitation of these errors could lead to a sit-
ward and backward pointers and could allow an attacker touation where the program becomes vulnerable to one of
overwrite arbitrary memory locations at some later point in the previously described vulnerabilities. Two kinds of in-
the program. As mentioned in the previous section: if a teger errors that can lead to exploitable vulnerabilities exist:
new chunk of the same size abunk2is freed it will be integer overflows and integer signedness errors. An inte-
placed beforehunk2in the list. The following pseudo code ~ ger overflow occurs when an integer grows larger than the
demonstrates this (modified from the original version found value that it can hold. The ISO C99 standard [21] mandates
in dimalloc): that unsigned integers that overflow must have a modulo of
MAXINT+1 performed on them and the new value must
be stored. This can cause an unprepared program to fail
or become vulnerable: if used in conjunction with memory
_ allocation, too little memory might be allocated causing a
Egﬁgﬂuzkgiiifa EDneW chunk possible heap overflow. Nonetheless, integer overflows do
- not usually lead to an exploitable condition.
The backward pointer ofiewchunkis set to point to Integer signedness errors on the other hand are more
chunk? the forward pointer of this backward pointer (i.e. likely to occur and could lead to exploitable situations.

2.1.4 Exploiting integer errors

BK = front_of_list_.of_.samesize_.chunks
FD = BK—FD
new_chunk—bk BK
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Figure 4. List of free chunks: full lines show a normal list of chunks, dotted lines show the changes
after a double free has occurred.

When the programmer defines an integer, it is assumed tcare stored after thdata section and, hence, if a buffer lo-
be a signed integer, unless explicitly declared unsigned. Ifcated in this data section is overflowed it can be used to
this integer is later passed as an argument to a function ex-overwrite them. Note that since tleéors section has prob-
pecting an unsigned value, an implicit cast will occur. This ably finished executing once an attacker is able to overflow
can lead to a situation where a negative argument passes a data-based buffer, this section is of less importance to an
maximum size test but is used as a large unsigned value afattacker. The layout of the header section betweenl#he
terwards, possibly causing a stack or heap overflow if usedandbsssections of a statically linked application compiled
in conjunction with a copy operation (e.gaegmcpyr mem- with the GNU Compiler Collection (version 2.95.3) is as
moveé expects an unsigned integer as its size argument andollows: data, eh frame ctors, dtors GOT andbss(see Fig-
when passed a negative signed integer, it will assume this isure 5(a)). These sections will be mapped to memory in that
a large unsigned value). order. Attackers can inject code by inserting their shellcode

More information about these attacks can be found in [7] into the buffer they are overflowing in the data section and
and is also discussed extensively in the master thesis [51] oby continuing the overflow and overwriting a pointer in the
one of the authors. dtors section to point to their code. When the program fin-

ishes the main function, it will call the injected code [36].
2.2 Exploiting data and bss based overflows
2.3 Attacks on format string vulnerabilities

Datamemory contains global or static compile-time ini-
tialized memory and thes$ memory contains uninitialized Format functions are used to format the output of specific
global or static variables (that are initialized to 0 at load- information. They have a variable amount of arguments and
time). These memory segments are constant in size: theyexpect a format string as argument. The format string is a
will not grow during program execution. Overflows in these character string that is literally copied to the output stream
parts of memory are much the same as heap overflows: asinless a % character is encountered. This character is fol-
no return addresses are present an attacker would normallyowed by format specifiers that will manipulate the way the
either overwrite a function pointer or perform an indirect output is generated. When a format specifier requires an ar-
pointer overwrite. gument, the format function expects to find this argument

Programs compiled with the GNU Compiler Collection on the stack. A format string vulnerability occurs if an at-
can register functions as constructor and destructor func-tacker is able to specify the format string to a format func-
tions. These functions will be executed respectively before tion (e.g.,printf(s), wheresis a user-supplied string). One
and after the main function is executed. To know which format specifier is particularly interesting to attackers: %n.
functions to execute as constructor or destructor, a specificThis specifier will write the amount of characters that have
part of memory is reserved in which pointers to these func- been formatted so far to a pointer that is provided as an ar-
tions are stored. Thestorsanddtorssections respectively ~gument to the format function [1].

3 - _ _ _ If attackers are able to specify the format string, they

memcpyis the §tandard C library function that is used to copy mem- can use format specifiers like %x (print the hex value of
ory from one location to another where memory areas may not overlap,

memmoveloes the same but allows for overlapping memory areas. an_integer) to pop WOI’dS.Off the StaCK: until t_hey reach a
“4pssstands for "block started by symbol”. pointer to a value they wish to overwrite. This value can




then be overwritten by crafting a special format string with pointers and control-flow information would make it easier
%n specifiers [41]. Using this technigue attackers can readto add protections to these locations and would already pre-
and write arbitrary memory locations. vent buffer overflow attacks from modifying them. We also
suggest protecting the different memory sections by placing
We described some advanced exploitation techniques ina non-writable page in between each section, making sure
this section and focused on heap-based buffer overflows andhat a buffer overflow will not allow an attacker to write
dangling pointer references. We have focused on these twanto other sections. A limitation of this approach is that,
specific attacks as, next to the more global countermeasurefn its current form, it does not take attacks that can modify
that were designed using our machine model, we present tharbitrary memory locations (like format string vulnerabili-
details of a countermeasure that would specifically make at-ties) into consideration. However, protecting against buffer
tacks on heap-based buffer overflows and dangling pointeroverflow attacks that perform code injection is a first step
references harder. However, the attacks describes describetthat could afterwards be enhanced to protect against code
in this section are not the only way an attacker can performinjection attacks in general.
code execution, [23, 40] describe a number of attacks on |n the rest of the section we will illustrate our ap-
Multics where an attacker was able to gain higher privi- proach for the 32-bit Intel architecture (IA32), using the
leges by misusing constructs specific to the implementationGNU/Linux operating system with gcc-2.95.3 for the lan-
of Multics that were not a result of using a specific pro- guage C.
gramming language. Such attacks could also be modeled  separating control and data information requires several
when using a machine-model. This might make it easier for changes to the process memory of an application. We will
software engineers to fix these bugs. describe the major changes here and will discuss one of
these changes in more detail.
3 Model-based countermeasure design

e Firstly, we must modify the way the stack is organized:
Most of the countermeasures described in section 5 use  The control data (e.g. the return address, the frame

an ad hoc approach when trying to prevent vulnerabilities. pointer, caller and callee save registers, pointers, ...)
In [52] we concluded that a more methodical approach is must be separated from the regular data. To do this
needed to combat code injection attacks. We propose do-  we suggest making 3 stacks: one stack which contains
ing this by building a model of the execution environment the return addresses this is the regular stack and can
of the program based on the memory locations and abstrac-  still take advantage of the call and ret instructions. A
tions that influence the execution flow. This model con- second stack contains the frame pointers, local pointers
tains addresses and abstractions that can be used by an at- and arrays of pointePs Finally a third stack contains
tacker to directly or indirectly influence the control flow of a the other data.

particular application, supplemented with the locations that

could lead to indirect overwriting of these addresses. Fi- o Secondly, dynamically allocated memory must have its
nally, these are supplemented with contextual information: memory management information stored out-band. To
what these specific memory locations are used for at dif-  accomplish this its management information is stored
ferent places of the execution flow and what operations are at the beginning of the heap-section in a hashtable. The

performed on them. This machine model allows a deSigner actual dynamica”y allocated memory S|mp|y contains
of countermeasures to view a platform in a more abstract the user-allocated memory.

way and as a result more effort can go into designing coun-
termeasures rather than understanding obscure, possibly in-
significant, platform details. It also allows a designer to take
into account what the effects of a particular countermeasure
are on a platform before having to implement it.

On most architectures code and data are loaded into sep-
arate segments of memory and have different properties
(e.g. the code segment is typically read-only, the data seg-
ment is in some cases, on architectures that support it, non-
executable). We can protect memory locations against code
injection attacks by using a similar approach: by separating
pointers and conirol-fiow information from normal data like 5These arrays would be boundschecked: the impact on performance of

bUﬁerS_: i.e. to Store_them in separate contiguous MEeMOIYis kind of boundschecking would be acceptable because arrays of point-
areas instead of storing them next to each other. Separatingrs don't occur that often in a regular program

e Finally, the memory in the data segment must be orga-
nized in a different order. The ctors and dtors sections
would be stored first (and could, in theory, be placed
in a read-only page), followed by the Global Offset Ta-
ble (GOT), the exception handling frame, which are
followed by pointers, regular data, arrays of pointers
(again boundschecked) and finally normal arrays. Fig-
ure 5(a) shows the current layout and 5(b) shows the
new layout.
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Figure 5. Original and modified data segment layout




3.1 A partial machine model for the dynamic Modify: expresses what memory locations are modified by

memory allocator the function, expressed in terms of the supplied argu-
ment to the function or in terms of globally accessible
For the purposes of this paper we will focus on the part data (e.g. Modify MallocChunk.free(memoryh ap-
of the machine model dealing with dynamically allocated pendix A specifies the modified memory functions for
memory. As we described earlier the machine model will thefree operation).

focus on memory locations that can be used by an attacker
to modify the execution flow of an application. We repre-

sent the data structures and abstractions that are relied o
during program execution using UML-class diagrams (see

Figure 6). Specific (_Jlata structures in memory are repre- L alloc chunks that contain the data of the chunk. The in-
sented as classes, with the data members representing Oth%rmation contained in thiallocChunkin Figure 6 is now

data structures contained in this structure (e.g. the Heap .
. tored in the hashtable. When altocate or free opera-
contains MallocChunks). The order and frequency that par-S : 3 P

ticular parts of memory. oceur in. are denoted by the si nstion is performed, the required information is looked up in
) P y ' y 95 the hashtable. The countermeasure for preventing a double
in front of the data member names:

frees of dangling pointer reference is a fairly simple one:
the unused bit in the size structure of Figure 6 is used to
specify whether the current chunk is in use or not. This
- denotes that the order does not matter could also be solved by checking theev.inusebit of the
next chunk, but the cost of accessing that bit is higher than
* denotes that the part of memory can occur zero or moreusing the unused bit in size, especially when using the extra
times, other data members occur exactly once. indirection of the hashtable.
We are currently working on an implementation of this
For example, in Figure 6 the heap contains one or morecountermeasure to better assess the impact such a counter-
malloc chunks in any order, with the malloc chunks con- measure has on performance and memory usage.
taining exactly one instance @ievsizeandsizein order.
The member functions represent operations that can be per3.2 A machine model for the 1A32-GNU/Linux-
formed on specific memory locations, in the case of a chunk GCC-C platform
those arallocateandfree These member functions are re-
defined in their children if these operations are defined on The machine model obviously includes more than the ab-
these locations (e.g. a free chunk can be reallocated, butraction of the dynamic memory allocator. In this section
should not be freed a second time, headecateis rede- g will describe the memory locations that form the full ba-
fined, whilefreeis not). _ sis for our model, namely the memory locations that could
To be able to represent the operations that are exete modified by attackers to gain control over the execution-
cuted on these locations we have defined two primitives: fiow of an application. These memory locations are specific
R(sourceyandW(source, destinationyhich stand for read o, programs on a UNIX-like environment compiled with
and write respectively. They can appear in forms where theyihe gNU Compiler Collection, although many have equiv-
respectively read or write to memory locations or registers. gjents in other operating systems and compilers.
Besides these 2 primitives we need some control structures

(like conditionals and loops) and temporary values (which Return address: The return address is stored on the stack

Applying the principles of control and data separation as
described earlier to the heap results in the modification of

e machine model depicted in Figure 7. The heap now con-
tains one hashtable at the beginning of memory, followed by

+ denotes an ordered location.

are needed to temporarily store states in our model that in- and points to the memory location where execution

dicate that a particular value was read into a variable at that must continue once a function has finished. This is the

point in time). address that is usually attacked by stack-based buffer
We have defined two types of representations to model  overflows and is also the memory location that most

an operation (see appendix A for an example of how the countermeasures protect.

free operation would be expressed):
Frame pointer; The frame pointer points to the location

Define: defines what the operation does in sequential or- on the stack where a new stackframe was started and
der in terms of memory location modifications (e.g. is used to reference local variables on the stack. The
Define MallocChunk.free(memoryjefines thefree frame pointer is stored in a register and thus cannot
operation onMallocChunkmemory which would ex- be modified directly by an attacker. However when a

pect a pointer to memory as argument, the details of new stack frame is started, the old frame pointer will
this operation are in appendix A). be stored onto the stack and will be restored before
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returning from the function. When returning from a
function the current frame pointer (in the register) will
be copied to the stackframe pointer to free the stack
and the stack-stored frame pointer will be copied to the
frame pointer. The value that's at the top of the stack
is now the return address and will be used to return
from the function. If attackers modify the stack-stored
frame pointer they will, at some point in the sequence
of function calls, be able to influence where the return
address is read from. Such an attack on this memory
location has been described in detail in [26].

Function and data pointers: An easy way for an attacker

to modify the control flow of a program is to modify
a function pointer to point to injected code and to wait

that contains information needed to restore the stack
to its state at the moment of tleetjmpcall (i.e. re-
moving stackframes of functions further down the call
chain). The information stored in thep_buf are the
callee save registefsthe frame pointer register, the
stack pointer register and the instruction pointer regis-
ter (i.e. thesetjmpreturn address). By restoring this
information into the registers, the stack will be freed
of lower level stack frames and execution will continue
at thesetjmpcall site. If attackers modify the informa-
tion (especially the saved instruction pointer register)
in thejmp_buf and then causes an error that will make
the program call dongjmp they will be able to gain
control over the execution flow.

for the function pointer to be called. Data pointers can Exception handling frame: For C++ programs that make

also be misused by attackers if they point to data that
the attacker will be able to write to using that pointer.

By modifying the contents of the data pointer and mak-
ing it point to a new location, an attacker can subse-
quently modify the value stored at that memory loca-
tion (indirect pointer overwriting, see section 2.1.1).

Virtual function pointers: Virtual function tables and

pointers are used to support dynamic binding for C++.
The binding of a member function declared as virtual
then occurs at runtime based on the type of the ob-
ject. To facilitate this dynamic binding the compiler

use of exceptions, the compiler will generate an excep-
tion handling frame (calledh.framé which could be
overwritten to point to injected code. If an attacker can
then force the program to generate an exception, the
injected code would be executed.

dtors: Thedtorssection contains a list of pointers, termi-

nated by a NULL, to functions that will be executed af-
ter the main function has finished. If an attacker over-
writes one of these pointéawith a pointer to injected
code it will be executed after the normal program code
has finished executing.

adds a virtual table to every class that contains virtual Global Offset Table: The Global Offset TableGOT) is

functions. Then in each instance made of the class,
a pointer (called the virtual pointer) is placed to this
virtual table. Whenever a virtual member function is
called, the virtual pointer is used to locate the virtual
table and then the pointer at the appropriate virtual ta-
ble slot is dereferenced and the method’s code can be
located. The virtual function pointer is stored in each
object together with its data members. If attackers can
overflow one of the buffers contained in the object they
may be able to overwrite this poinferThe attackers
then make this pointer point to a dummy table that con-
tains entries for the member functions of the object,
that point to injected code. When one of these member
functions is subsequently called, the injected code will
be executed. More information on how these pointers
can be attacked can be found in [37].

used for dynamically linking code. It allows posi-
tion independent code to access data at absolute vir-
tual addresses. Instead of accessing the data directly
this type of code references a position in its global
offset table to retrieve the address, allowing the data
to be stored at any memory location without breaking
the code. An executable and every shared library each
have their ownGOT. The dynamic linker will calcu-
late the absolute addresses of the requested symbols
and will set the appropriate entries in t6OT to point

to these addresses. TREOT also contains addresses
of functions that have been dynamically loagieddi an
attacker overwrites one of the addresses with the loca-
tion of injected code then the next time this function
will be called, the attacker’s code will be executed.

atexit: atexitis a C function defined in the 1ISO C99 stan-

setjmp/longjmp buffer: The setjmp and longjmp func-

tions are used to perform non-local returns in C,

dard that allows a program to register a function to be

mainly for error handling. If a program wishes to re-
turn to a specific location in code when an error oc-
curs, it can calketjmpwith a pointer to a variable of
typejmp_buf as argument. Thignp_buf type is a struct

60r the virtual function pointer of the next object if the pointer is stored

before the data, this is compiler dependent.

"These registers are supposed to have the same value after a function

returns, so if a function wishes to use them it must save them and restore
them before returning.

8f no destructor functions are registered thters section will still be

present but will only contain the NULL terminator. An attacker can still
exploit an empty dtors section by overwriting the NULL terminator

9The process of calling dynamically linked code is more complicated

but not relevant to the discussion, see [30] for more details.



called when the program terminates normally (i.e. by models for a particular platform and allows one to work out
explicitly or implicitly calling exit). The atexit func- the global principles of a particular countermeasure without
tion is passed a function pointer to the function that having to deal with the implementation details. This allows
is to be registered and stores the function pointer in countermeasure builders to design countermeasures at an
the atexitfunction list. When the program reaches the even higher level of abstraction in a platform-independent
stage thaexit is called, all functions in the function way. By allowing platform-independent reasoning and by
list will be executed one by one. If attackers overwrite keeping the representation of machine models uniform, the
one of these function pointers with a pointer to injected metamodel simplifies the task of porting a countermeasure
code, they will be able to execute arbitrary code [8].  from one platform to another while being able to assess if
a particular platform may need extra measures. For exam-
ple, the Windows port [9] of StackGuard [13] neglected to

. . take into account the way exceptions were handled on this
ory aIIocato_r can, as we de_monst_rated In section 2, platform and as a result attackers found a way of bypassing
be used to indirectly overwrite arbitrary memory 10- o ¢ountermeasure fairly quickly [32]. We argue that us-
cations if this information can bg_modnﬁed by a heap ing the metamodel and machine models for the respective
overflow or double free vulnerability. platforms would have made it easier to spot possible short-

Memory allocation hooks: Some implementations afl- comings when porting the countermeasure.
mallocallow a program to register hooks for theal- The methodology describes how to build a machine
loc, realloc, free and memalignfunction calls. These =~ model for a particular platform based on this metamodel.
hooks contain pointers to functions that will be exe- It contains information that a particular expert of a platform
cuted by these memory management functions when-(but not necessarily a security expert) must focus on to build
ever they are called. If an attacker overwrites one of & machine model for that platform. The machine model can
these hooks with a pointer to injected code, the code then be used by a security engineer to build countermea-
will be executed whenever the respective memory al- Sures to protect against code injection attacks. As a result
location function is executed. the model also improves the possibility of collaboration:
one person can build the machine model, another can de-
sign the countermeasure and yet another can implement the
countermeasure.

Usi delbased h to desiani ; A significant problem of the principle of control data
sihg a modeibased approach to designing countermea, , regular data separation that we use in our countermea-

sures has several advantages: _the b sure is the possible impact on performance because of cache
son about countermeasure design at a conceptual level an

. : . isses: if related data is stored in separate pages, multiple
in a more systematic way. Because all relevant informa-

. ) . ) ) . pages may have to be loaded into memory, to get the same
tion is gasﬂy available anq irrelevant mform.atlon is not, information that would normally be stored in a single page.
fche d_e5|gner can more easily check for possible shortcom-The performance impact of using separate stacks must also
ings in the proposed countermeasure. Many of the counter investigated

measures in section 5 use an ad hoc gpproach that has led A shortcoming of the countermeasure for attacks against
to many of these countermeasures being bypassed. Thest‘?eap memory is the fact that we ignore the kind of data

countermeasures could benefit from a more structured WaYy ~tis stored in the heap-allocated memory: objects (in the

of countermeasure design Which the use of_machine r_nOdelscase of C++), structs and other pointers that may be stored
offers. A further advantage of using a machine model is thatin this memory could still lead to code injection attacks.

it provides an easier way of comparing the efiectiveness 0fSeparating this data from regular data is something we plan
countermgasures. Related to that, it would aI;o offer a WaYy o address in the near future.
of evaluating how two countermeasures could interfere with
or complement each other.
Such a machine model is however strongly linked to the ©  Related work
architecture, the operating system, the programming lan-
guage and the compiler that it is based on. Because this Much work has gone into building countermeasures for
dependency would limit the applicability of such a model, the attacks described in section 2. In this section we will
we are also in the process of designing a metamodel andexamine some of these countermeasures and will discuss
devising a methodology for constructing machine models their limitations. Many countermeasures have been devel-
based on this metamodel. oped and a more global overview can be found in a survey
The metamodel is an abstraction of several machinewe recently completed [52]. We will focus on two types
models: it provides uniformity when constructing machine of countermeasures here: a subpart of preventative counter-

Memory allocator information: The accounting informa-
tion that is used to keep track of free chunks in a mem-

4 Discussion and future work



measures (safe languages) and detecting countermeasures.
Preventative countermeasures try to prevent a vulnerabil-
ity from existing. Detecting countermeasures try to prevent

a vulnerability from being exploited, which in most cases
will lead to detection of an attempted exploitation, hence
the name detecting countermeasures.

e Safe languages [19, 28, 33, 34] that are based on C or
C++, offer a systematic way of solving the problems
mentioned in section 2, by using a variety of tech-
nigues like managed memory, boundschecking, static
checking, etc. The main disadvantage of these lan-
guages is that they change the language, so programs
must be either explicitly written for that specific lan-
guage or must be ported.

e Boundschecking solutions [3, 20, 25, 31, 35, 39, 45]
solve the buffer overflow problem by ensuring that a
pointer can not write outside the bounds of the object
it is pointing to. This is done by instrumenting the pro-
gram to check every pointer access. As a result the im-
pact of these boundscheckers on performance is gener-
ally fairly high, limiting their use at deployment-time.

e Many countermeasures have been developed that will
protect a single or multiple memory locations from
exploitation. This can be done in a variety of ways:
by placing a random value before the address being
protected and making sure that the random value re-
mains unchanged before using the memory location
[13, 15, 27], by copying the memory location to a dif-
ferent area of memory and comparing the original to
the copy before use [4,11,16,47] or by calculating a
checksum of several memory locations and encrypting
(XOR) this with a random value and recalculating the
checksum and encryption and comparing it to the orig-
inal checksum before using the memory location [38].
Many of these countermeasures were designed ad hoc:
they protect against a specific address being overwrit-
ten and can often be bypassed (especially using indi-
rect pointer overwriting).

e Another approach taken by some countermeasures is
to attempt to protect "all” memory locations: either
by encrypting all pointers [12] or by enforcing a kind
of access control on what memory locations pointers
can reference [50]. These approaches are the most
promising when trying to prevent code injection at-
tacks. However if the program suffers from memory

approach in [50] has some limitations: the slowdown
is fairly large (but less than boundscheckers) and the
static analysis that is used to determine what locations
are appropriate for pointers to write to, may produce
false negatives. This could result in memory locations
that should not be written to, to be marked as writable.

Marking memory as non-executable [42, 46] is also an
approach that has been taken to prevent code injec-
tion attacks. However this approach has some limita-
tions: memory that is not marked as non-executable
but is still writable could still be used to perform
these attacks (e.g. [42] only marks the stack as non-
executable, the heap can still be used for code injec-
tion attacks). Another limitation is that these coun-
termeasures can be bypassed by 'return-into-libc’ at-
tacks [43, 48], where attackers execute existing code
(either code that is part of the program or library code)
with arguments that they provide (e.g. they could call
the libc wrapper for theystenrsystem call with a pro-
gram they wish to run as argument).

Another kind of countermeasure provides a random-
ized instruction set [5, 24]: instructions are encrypted
(XOR) when they are stored in memory and decrypted
before being loaded into the processor. Without ac-
cess to the encryption key, code that attackers inject
would be decrypted wrongly and the program would
probably crash. This approach suffers from the same
problem as [12]: if information is leaked, an attacker
could guess the key and encrypt his instructions ac-
cordingly. Another major limitation of this counter-
measure is that, unless hardware changes are made
(e.g. a special chip), the impact on performance is ex-
tremely high as the code must be emulated.

Attackers generally need to know where their code or
the location they wish to overwrite is located in mem-
ory before they can perform a code injection attack.
By randomizing the position at which specific mem-
ory starts [46, 49], it is harder for attackers to guess
where their code is located or where specific vulnera-
ble memory addresses are located. This countermea-
sure could also be bypassed if attackers can read out
memory locations: by reading the position of some lo-
cations they could guess where their code or where the
target memory location is located.

Some of these countermeasures offer good and com-

leaks or could be made to show the contents of spe-plete protection, but can be impractical to use, either due
cific memory locations (e.g. using a format string vul- to high performance penalties or because they require man-
nerability), the countermeasure in [12] could be by- ual changes to the program or both. However, many of
passed: attackers could guess the key by viewing thethese countermeasure are designed in an ad hoc way and
encrypted locations and encrypt the pointers to mem- as a result suffer from limitations that could be misused by
ory locations which they inject with the same key. The an attacker to bypass the countermeasure. Modifying these



countermeasures to offer better protection against these at-
tacks could be made easier if they were designed using the
models that we described in section 3.

6 Conclusion

We have discussed how attackers can exploit vulnerabil-

[6]

ities that were previously considered harmless and how they
are using more advanced exploitation techniques to bypass
countermeasures that aim to protect a single memory loca-

tion. From this we concluded that there is a need for a more [7

structured approach to counter attacks and we are building
a model of the execution environment of a program to iden-
tify memory locations that may be used by an attacker to [8]
inject code.

Using machine models and a metamodel, we offer a
higher level of abstraction when designing countermeasures

which will allow designers to create countermeasures more

easily and will allow them to detect problems sooner. The [9]
models also allow for easier collaboration when building
countermeasures: the person building the model is not nec-
essarily the person designing the countermeasure. Because
the machine models are designed uniformly based on the
metamodel, they also allow for easier porting of the coun- [10]

termeasure from one platform to another. Related to that,

they also provide a platform for evaluating and comparing
different countermeasures more easily.

The approach we present here is far from complete; we
are in the process of constructing machine models for other,

sufficiently different platforms. This establishes a firm ba-
sis for a metamodel that becomes a driver in refining our
methodology.
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A Representation of thefree operation in the model

Modify MallocChunk. free (memory):
malloc_state . maxfast. fastchunkbit
—> R(malloc_state + 0) & 2
— R(malloc_state) & 2
malloc_state . maxfast.anychunkshit
—> R(malloc_state + 0) & 1
— R(malloc_state) & 1
CHUNK. forward —> x(memory — 8 + 8)
—> memory
malloc_state . fastbins [(SIZE / 8) 2]
— R(malloc_state + 4) + ((R(memory— 4) & OXFFFFFFF8) / 8)— 2)
PREVCHUNK. forward . backward
— R((memory — 8) — R((memory— 8) + 4) + 8) + 12
— R(memory — R(memory — 4)) + 12
PREVCHUNK. backward . forward
— R((memory — 8) — R((memory— 8) + 4) + 12) + 8
— R(memory — R(memory — 4) + 4) + 8
CHUNK. forward . backward
— R((memory — 8) + 8) + 12— R(memory)+12
CHUNK. backward . forward
— R((memory — 8) +12) + 8 — R(memory + 4)+8
NEXTCHUNK. size
— ((memory — 8) + R(memory— 8 + 4) + 4)
—> ((memory — 8) + R(memory — 4) + 4)
NEXTCHUNK. forward . backward
— R((memory — 8) + R(memory— 8 + 4) + 8) + 12
— R((memory — 8) + R(memory— 4) + 8) + 12
NEXTCHUNK. backward . forward
— R((memory — 8) + R(memory— 8 + 4) + 12) + 8
— R((memory — 8) + R(memory— 4) + 12) + 8
CHUNK. backward
—> memory — 8 + 12
—> memory + 4
malloc_state . bins[0]. forward. forward
— R(R(malloc_state + 48) + 8) + 8
malloc_state . bins[0].forward . backward
— R(R(malloc_state + 48) + 8) + 12
CHUNK. size . previnuse
— R(memory— 8 + 4) & 1
— R(memory — 4) & 1
CHUNK. size . size
— R(memory — 8 + 4) & OxFFFFFFF8
— R(memory — 4) & OxFFFFFFF8
malloc_state .top
—> malloc_state + 40



Define MallocChunk. free (memory):
if R(memory) = 0
return
CHUNK = R(memory) — 8
SIZE = R(CHUNK. size .size)
if SIZE <= 80
W(malloc_state . maxfast. fastchunkbit, true)
W(malloc_state . maxfast.anychunksbit, true)
W(CHUNK. forward , R(malloc_state . fastbins [(SIZE / 8) 2]))
W(malloc_state . fastbins [(SIZE / 8) 2], CHUNK)
if R(chunk.size.mmap) = false
W(malloc_state . maxfast.anychunksbit, true)
NEXTCHUNK = CHUNK + SIZE
NEXTSIZE = R(NEXTCHUNK. size .size)
if R(CHUNK. size .previnuse) = false
SIZE = SIZE + R(CHUNK. prev_size)
CHUNK = CHUNK — R(CHUNK. prev_size)
FD = R(CHUNK. forward)
BK = R(CHUNK. backward)
W(CHUNK. forward . backward ,R(CHUNK. backward))
W(BK. forward , FD)
if NEXTCHUNK != R(malloc_state.top)
NEXTINUSE = R((NEXTCHUNK + NEXTSIZE) . size .previnuse)
W(NEXTCHUNK. size , NEXTSIZE)
if NEXTINUSE = false
FD = R(NEXTCHUNK. forward)
BK = R(NEXTCHUNK. backward)
W(NEXTCHUNK. forward . backward ,R(NEXTCHUNK. backward))
W(BK. forward , FD)
SIZE = SIZE + NEXTSIZE
BK = R(malloc_state .bins[0])
FD = R(malloc_state.bins[0]. forward)
W(CHUNK. backward ,R(malloc_state . bins[0]))
W(CHUNK. forward , FD)
W(BK. forward , CHUNK)
W(FD. backward , CHUNK)
W(CHUNK. size . previnuse , true)
W(CHUNK. size .size, SIZE)
W((CHUNK + SIZE).prevsize , SIZE)
else
W(CHUNK. size . previnuse , true)
W(CHUNK. size .size , SIZE + NEXTSIZE)
W(malloc_state .top, CHUNK)



