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Abstract. Web browsers that support a safe language such as Javascript are
becoming a platform of great interest for security attacks. One such attack is a
heap-spraying attack: a new kind of attack that combines the notoriously hard to
reliably exploit heap-based buffer overflow with the use of an in-browser script-
ing language for improved reliability. A typical heap-spraying attack allocates a
high number of objects containing the attacker’s code on the heap, dramatically
increasing the probability that the contents of one of these objects is executed. In
this paper we present a lightweight approach that makes heap-spraying attacks in
Javascript significantly harder. Our prototype, which is implemented in Firefox,
has a negligible performance and memory overhead while effectively protecting
against heap-spraying attacks.

Keywords: heap-spraying, buffer overflow, memory corruption attacks, browser
security.

1 Introduction

Web browsing has become an very important part of today’s computer use. Compa-
nies like GoogleTMand Yahoo are evidence of this trend since they offer full-fledged
software inside the browser. This has resulted in a very rich environment within the
browser that can be used by web programmers. However, this rich environment has
also lead to numerous security problems such as cross site scripting and cross site re-
quest forgeries (CSRF). The browser is often written in C or C++, which exposes it
to various vulnerabilities that can occur in programs written in these languages, such
as buffer overflows, dangling pointer references, format string vulnerabilities, etc. The
most often exploited type of C vulnerability is the stack-based buffer overflow. In this
attack, an attacker exploits a buffer overflow in an array, writing past the bounds of the
memory allocated for the array, overwriting subsequent memory locations. If the at-
tackers are able to overwrite the return address or a different type of code pointer (such
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as a function pointer), they can gain control over the program’s execution flow, pos-
sibly redirecting it to their injected code. While stack-based buffer overflows are still
an important vulnerability in C programs, they have become harder to exploit due to
the application of many different countermeasures such as StackGuard [30], ProPolice
[14], ASLR [5], etc. The goal of these countermeasures is to protect areas of potential
interest for attackers from being modified or to prevent attackers from guessing where
their injected code is located, thus preventing them from directing control flow to that
location after they have overwritten such an area of potential interest. Attackers have
subsequently focussed on different types of vulnerabilities. One important type of vul-
nerability is the heap-based buffer overflow. However, due to the changing nature of
the heap, these vulnerabilities are notoriously hard to exploit. Especially in browsers,
where the heap can look completely different depending on which and how many sites
the user has visited, it is hard for an attacker to figure out where in the heap space his
overflow has occurred. This makes it hard for attackers to figure out where their in-
jected code is located. The application of countermeasures like ASLR (Address Space
Layout Randomization) on the heap has made it even harder to reliably exploit these
vulnerabilities. ASLR is a technique by which positions of key data areas in a process’s
address space, such as the heap, the stack or libraries, are arranged at random positions
in memory. All attacks based on the knowledge of target addresses (e.g. return-to-libc
attacks in the case of randomized libraries or attacks that execute injected shellcode in
the case of a randomized heap/stack) may fail if the attacker cannot guess the exact tar-
get address. Recently a new attack emerged that combines the rich environment found
in the browser to facilitate exploits of C vulnerabilities, sometimes resulting in the suc-
cessful bypass of countermeasures like ASLR that are supposed to protect against these
type of vulnerabilities. Heap-spraying attacks use the Javascript engine in the browser
to replicate the code they want executed a large amount of times inside the heap mem-
ory, dramatically increasing the possibility that a particular memory location in the heap
will contain their code. Several examples of heap-spraying attacks have already affected
widely used web browsers like Safari, Internet Explorer and Mozilla Firefox.

This paper presents an approach that protects against heap-spraying attacks based on
the observation that the attack relies on the fact that the heap will contain homogenous
data inserted by the attacker. By introducing diversity in the heap at random locations
and by modifying the way that Javascript stores data on the heap at these locations, we
can build an effective protection against these exploits at low cost. We implemented
this countermeasure in the Javascript engine of Firefox, Tracemonkey1 The overhead
of our approach is very low, measuring the overhead of the countermeasure on a num-
ber of popular websites which use a significant amount of Javascript, showed that our
approach has an average overhead of 5%. The rest of the paper is organized as follows:
Section 2 discusses the problem of heap-based buffer overflows and heap-spraying in
more detail, while Section 3.1 discusses our approach and Section 3.2 our prototype
implementation. Section 4 evaluates our prototype implementation, while Section 5
compares our approach to related work. Section 6 concludes.

1 In the remainder of the paper we will refer to Spidermonkey, since Tracemonkey is based
on the former engine to which it adds native-code compilation, resulting in a massive speed
increase in loops and repeated code.
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2 Problem Description

2.1 Heap-Based Buffer Overflows

The main goal of a heap-spraying attack is to inject malicious code somewhere in mem-
ory and jump to that code to trigger the attack. Because a memory corruption is required,
heap-spraying attacks are considered a special case of heap-based attacks. Exploitable
vulnerabilities for such attacks normally deal with dynamically allocated memory. A
general way of exploiting a heap-based buffer overflow is to overwrite management in-
formation the memory allocator stores with the data. Memory allocators allocate mem-
ory in chunks. These chunks are located in a doubly linked list and contain memory
management information (chunkinfo) and real data (chunkdata). Many different alloca-
tors can be attacked by overwriting the chunkinfo.

Since the heap memory area is less predictable than the stack it would be difficult to
predict the memory address to jump to execute the injected code.Some countermeasures
have contributed to making these vulnerabilities even harder to exploit [35,13].

2.2 Heap-Spraying Attacks

An effective countermeasure against attacks on heap-based buffer overflow is Address
Space Layout Randomization (ASLR) [5]. ASLR is a technique which randomly ar-
ranges the positions of key areas in a process’s address space. This would prevent the at-
tacker from easily predicting target addresses. However, attackers have developed more
effective strategies that can bypass these countermeasures. Heap spraying [27] is a tech-
nique that will increase the probability to land on the desired memory address even if
the target application is protected by ASLR. Heap spraying is performed by populating
the heap with a large number of objects containing the attacker’s injected code. The act
of spraying simplifies the attack and increases its likelihood of success. This strategy
has been widely used by attackers to compromise security of web browsers, making
attacks to the heap more reliable than in the past [4,8,22,25,32] while opening the door
to bypassing countermeasures like ASLR.

NOP NOP

NOP NOP

NOP NOP

NOP NOP

NOP NOP

shellcode

Fig. 1. NOP sled and shellcode appended to the sequence

A heap-spraying attack attempts to increase the probability to jump to the injected
code (shellcode). To achieve this, a basic block of NOP2 instructions is created. The

2 Short for No Operation Performed, is an assembly language instruction that effectively does
nothing at all [17].
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size of this block is increased by appending the block’s contents to itself, building the so
called NOP sled. Finally shellcode is appended to it. A jump to any location within
the NOP sled will transfer control to the shellcode appended at the end. The bigger
the sled the higher the probability to land in it and the attack to succeed. A schema of
a NOP sled with the shellcode appended to it is provided in Fig.1. The second phase of
the attack consists of populating the heap of the browser with a high number of these ob-
jects, by using the legal constructs provided by the scripting language supported by the
web browser. Figure 2 shows the schema of a heap-spraying attack during heap popula-
tion. Although in this paper we will refer to heap-spraying the memory space of a web
browser, this exploit can be used to spray the heap of any process that allows the user
to allocate objects in memory. For instance Adobe Reader has been affected by a heap-
spraying vulnerability, by which malicious PDF files can be used to execute arbitrary
code [26]. Moreover, heap-spraying is considered an unusual security exploit since the
action of spraying the heap is considered legal and permitted by the application. In our
specific scenario of a heap-spraying attack in a web browser, memory allocation may
be the normal behavior of benign web pages. A web site using AJAX (Asynchronous
Javascript And XML) technology, such as facebook.com or plain Javascript such as
economist.com, ebay.com, yahoo.com and many others, would seem to spray the heap
with a large number of objects during their regular operation. Since a countermeasure
should not prevent an application from allocating memory, heap-spraying detection is a
hard problem to solve.
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Fig. 2. A heap-spraying attack: heap is populated of a large number of NOP−shellcode objects.
The attack may be triggered by a memory corruption. This could potentially allow the attacker to
jump to an arbitrary address in memory. The attack relies on the chance that the jump will land
inside one of the malicious objects.

Because the structure of the heap depends on how often the application has allo-
cated and freed memory before the spraying attack, it would be difficult to trigger it
without knowing how contents have been arranged. This would reduce the attack to a
guess of the correct address the malicious object has been injected to. But by using a
client-side scripting language, such as Javascript, it is also possible to create the ideal
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circumstances for such an attack and arrange the heap to get the structure desired by the
attacker, as described in [28,11].

Fig. 3 shows an example of a typical heap-spraying attack in Javascript.

1. var sled;
2. var spraycnt = new Array();
3. sled = <NOP_instruction>;
4. while(sled.length < _size_)
5. {
6. sled+=sled;
7. }
8. for(i=0; i< _large_; i++)
9. {
10. spraycnt[i] = sled+shellcode;
11. }

Fig. 3. A Javascript code snippet to perform a basic heap-spraying attack usually embedded in a
HTML web page

3 BuBBle: Protection against Heap-Spraying

In this section we describe our approach to prevent the execution of shellcode appended
to a NOP sled, when a heap-spraying attack and a memory corruption have occured.
Our general approach is described in Section 3.1 and our implementation is discussed
in Section 3.2.

3.1 Approach

An important property of a heap-spraying attack is that it relies on homogeneity of
memory. This means that it expects large parts of memory to contain the same infor-
mation (i.e., it’s nop-shellcode). It also relies on the fact that landing anywhere in the
nopsled will cause the shellcode to be executed. Our countermeasure breaks that as-
sumption by introducing diversity on the heap, which makes it much harder to perform
a heap-spraying attack. The assumption is broken by inserting special interrupting val-
ues in strings at random positions when the string is stored in memory and removing
them when the string is used by the application. These special interrupting values will
cause the program to generate an exception when it is executed as an instruction. Be-
cause these special values interrupt the strings inside the memory of the application,
the attacker can no longer depend on the nopsled or even the shellcode being intact.
If these values were placed at fixed locations, the attacker could attempt to bypass the
code by inserting jumps over specific possible locations within the code. Such an attack,
however is unlikely, because the attacker does not know exactly where inside the shell-
code control has been transferred. However, to make the attack even harder, the special
interrupting values are placed at random locations inside the string. Since an attacker
does not know at which locations in the string the special interrupting values are stored,



6 F. Gadaleta, Y. Younan, and W. Joosen

he can not jump over them in his nop-shellcode. This lightweight approach thus makes
heap-spraying attacks significantly harder at very low cost.

We have implemented this concept in the Javascript engine of Firefox, an opensource
web browser. The internal representation of Javascript strings was changed in order to
add the interrupting values to the contents when in memory and remove them properly
whenever the string variable is used or when its value is read. Interruption is regulated
by a parameter which can be chosen at browser build time. We have chosen this to be 25
bytes, which is the smallest useful shellcode we found in the wild [33]. This parameter
will set the interval at which to insert the special interrupting values. Given the length n
of the string to transform i (i = � n

25�) intervals are generated (with n > 25). A random
value is selected for each interval. These numbers will represent the positions within
the string to modify. The parameter sets the size of each interval, thus the number of
positions that will be modified per string. By choosing a lower value for the parameter
the amount of special interrupting values that are inserted will be increased. Setting the
size of each interval to the length of the smallest shellcode does not guarantee that the
positions will be at distance of 25 bytes. It may occur that a position p is randomly
selected from the beginning of its interval ip and the next position q from the end of its
interval iq. In this case (q−p) could be greater than 25, allowing the smallest shellcode
to be stored in between. However heap-spraying attacks are based on large amounts
of homogeneous data, not simply on inserting shellcode. Thus being able to insert this
shellcode will not simply allow an attacker to bypass this approach. When the charac-
ters at random positions are changed, a support data structure is filled with metadata to
keep track of original values and where in the string they are stored. The modified string
is then stored in memory. Whenever the string variable is used, the engine will perform
an inverse function, to restore the string to its original value to the caller. This task is
achieved by reading the metadata from the data structure bound to the current Javascript
string and replacing the special interrupting values with their original values on a copy
of the contents of the string. With this approach different strings can be randomized dif-
ferently, giving the attacker even less chances to figure out the locations of the special
values in the string. Because each string variable stays modified as long as it is stored
in memory and a copy of this string variable is only restored to its original value when
the application requests access to that a string. When the function processing the string
stores the result back to memory, the new string is again processed by our countermea-
sure. If the function discards the string, it will simply be freed. Moreover the Javascript
engine considered here implements strings as immutable type. This means that string
operations do not modify the original value. Instead, a new string with the requested
modification is returned.

3.2 Implementation

In this section we discuss the implementation details of our countermeasure. It has been
implemented on Mozilla Firefox (Ver. 3.7 Beta 3) [15], a widely used web browser and
its ECMA-262-3-compliant engine, Tracemonkey (Ver. 1.8.2)[18].

An attacker performing a heap-spraying attack attempts to arrange a contiguous
block of values of his choice in memory. This is required to build a sled that would not
be interrupted by other data. To achieve this, a monolithical data structure is required.
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JSStringstruct JSString {
    size_t  length;
    jschar  *chars;
};

524

length

0D0D0D0D0
D0D0D0D0D
0D0D0D0D0

........
D0D0D0D0D
0D0D0D0D0
D0D0D0D0D

chars

Fig. 4. Spidermonkey’s JSString type is considered a threat for a heap-spraying attack since mem-
ber chars is a pointer to a vector of size (length + 1)* sizeof(jschar)

Javascript offers several possibilities to allocate blocks in memory. The types sup-
ported by Spidermonkey are numbers, objects and strings. An overview about how the
Javascript engine represents Javascript objects in memory is given in [19].

The string type represents a threat and can be used to perform a potentially dangerous
heap-spraying. Figure 4 depicts what a JSString, looks like. It is a data structure
composed of two members: the length member, an integer representing the length of
the string and the chars member which points to a vector having byte size (length
+ 1) * sizeof(jschar). When a string is created, chars will be filled with
the real sequence of characters, representing that contiguous block of memory that the
attacker can use as a sled. We have instrumented the JSString data structure with the
fields needed for BuBBle to store the metadata: a flag transformed will be set to 1 if
the character sequence has been transformed and an array rndpos is used to store the
random positions of the characters that have been modified within the sequence.

Our countermeasure will save the original value of the modified character to rndpos,
change its value (at this point the string can be stored in memory) and will restore the
original value back from rndpos whenever the string is read.

This task is performed respectively by two functions: js Transform(JSString*)

and js Restore(JSString*). The value of the character to modify is changed to
the 1-byte value 0xCC. This is the assembly language instruction for x86 processors to

0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D0D SHELLCODE

0D0D0D0D0D    0D0  D0D00D0D0D0D0D0    D0D0D0D S H E     L L C O    D E

js_Transform()

Fig. 5. Representation of the transformed string in memory: characters at random positions are
changed to special interrupting values. The potential execution of the object’s contents on the
heap would be interrupted by the special value.
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"E"507..."0"52"D"28"0"4rndpos =
0 1 2 3 4 5 21 22

Fig. 6. How metadata is stored to array rndpos: index i within the array contains the value of the
position in the string; index (i + 1) contains its original value

generating a software breakpoint. If a heap-spraying attack was successfully triggered
and the byte 0xCC at a random position was executed, an interrupt handler is called to
detect and report the attack. The web browser could expose an alert popup to encourage
the user close the application and notify the browser vendor of the detected issue. The
number of characters to randomize depends on the degree parameter. This parameter
was chosen based on the length of the smallest shellcode found (to date, 25 bytes long3),
but can be tuned to select the level of security and the overhead that will be introduced
by the countermeasure. If size is the length of the string to transform, the number of
intervals is given by � size

24 �. A random value for each interval will be the position of
the character that will be changed. For performance reasons we generate 50 random
values in a range between (0, 24) at program startup and use these values as offsets
to add to the first index of each interval to compute the random position within that
interval. The random values are regenerated whenever the Garbage Collector reclaims
memory. This prevents the attacker from learning the values over time as they may
already have changed. The value of the ith random position is stored at rndpos[2i],
while the original value of the ith character is stored at rndpos[2i+1] (Fig. 6). Function
js Transform(str)will use the values stored in the str→rndpos[] array to restore
the string to its original value.

4 Evaluation

In Section 4.1 we discuss our performance overhead, while in Section 4.2 we report an
analytical study of the memory overhead in the worst case4.

All benchmarks were performed on an Intel Core 2 Duo 2Ghz, 4GB RAM, running
Debian Gnu/Linux.

4.1 Performance Benchmarks

To measure the performance overhead of BuBBle we performed two types of bench-
marks. We collected results of macrobenchmarks on 8 popular websites and accurate
timings of microbenchmarks running SunSpider, Peacekeeper Javascript Benchmark,
and V8 Benchmark Suite.

Macrobenchmarks: To collect timings of BuBBle’s overhead in a real life scenario,
we run a performance test similar to the one used to measure the overhead of Noz-
zle [23]. We downloaded and instrumented the HTML pages of eight popular web sites

3 The smallest setuid and execve shellcode for GNU/Linux Intel x86 to date can be found at
http://www.shell-storm.org/shellcode/files/shellcode-43.php

4 With worst case we mean the case where it is guaranteed that the smallest shellcode cannot be
stored on the heap without being interrupted by random bytes.

http://www.shell-storm.org/shellcode/files/shellcode-43.php
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by adding the Javascript newDate() routine at the beginning and the end of the page,
and computed the delta between the two values. This represents the time it takes to load
the page and execute the Javascript. Since the browser caches the contents of the web
page, that value will be close to how long it takes to execute the Javascript. We then
ran the benchmark 20 times for each site, 10 times with BuBBle disabled and 10 times
with BuBBle enabled. Table 1 shows that the average performance overhead over these
websites is 4.8%.

Table 1. Performance overhead of BuBBle in action on 8 popular web sites

Site URL Load (ms) Load(ms) BuBBle Perf. overh.
economist.com 17304 18273 +5.6%
amazon.com 11866 12423 +4.7%

ebay.com 7295 7601 +4.2%
facebook.com 8739 9167 +4.9%

maps.google.com 15098 15581 +3.2%
docs.google.com 426 453 +6.3%

cnn.com 12873 13490 +4.8%
youtube.com 12953 13585 +4.9%

Average +4.82

Microbenchmarks: Microbenchmarks, which allow us to better assess the overheads
introduced by BuBBle in different situations were also performed. These microbench-
marks were performed by running three different benchmarks: the SunSpider Javascript
Benchmarks [31], the Peacekeeper benchmarks [9] and the V8 benchmarking suite [16].

SunSpider: SunSpider is used by Mozilla Firefox to benchmark the core Javascript
language only, without the DOM or other browser dependent APIs. The tests are divided
into multiple domains: testing things such as 3D calculations, math, string operations,
etc.. Table 2 contains the runtime in milliseconds of running the various benchmarks
that are part of SunSpider. The results for each domain are achieved by performing a
number of subtests. However for most domains the overhead of the subsets is close to
0%. Thus, to save space in Table 2, we have removed the results of the subtests and
simply included the results of the domain (which is sum of all the subtests). However,
because we modify the way strings are represented in memory and do a number of
transformations on strings, we have included the subtests which test the performance of
string operations.

The results in Table 2 show that the overhead for BuBBle in areas other than string
manipulation are negligible. The overheads for string operations on the other hand vary
from 3% to 27%. This higher overhead of 27% for base64 is due to the way the base64
test is written: the program encodes a string to base64 and stores the result. When the
program starts, it generates a character by adding getting a random number, multiplying
the number by 25 and adding 97. This character is converted to a string and added to
an existing string. This is done until a string of 8192 characters is created. Then to
do the encoding, it will loop over every 3rd character in a string and then perform the
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Table 2. Microbenchmarks performed by SunSpider Javascript Benchmark Suite

Test Runtime(ms) BuBBle Runtime (ms) Perf. overh.
3d 568.6ms +/- 1.4% 569.0ms +/- 1.2% +0.17%

bitops 66.4ms +/- 1.8% 67ms +/- 1.8% +0.89%
controlflow 13.8ms +/- 1.9% 14.0ms +/- 1.6% +1.44%

math 63.2ms +/- 1.0% 63.6ms +/- 1.7% +0.62%
regexp 84.2ms +/- 2.0% 84.4ms +/- 2.9% +0.23%
string

base64 74.8ms +/- 2.9% 102.2ms +/- 1.9% +27.3%
fasta 280.0ms +/- 1.5% 283.4ms +/- 0.7% +1.24%
tagcloud 293.2ms +/- 2.6% 299.6ms +/- 0.8% +2.20%
unpack-code 352.0ms +/- 0.8% 363.8ms +/- 3.1% +3.24%
validate-input 119.8ms +/- 2.4% 132.2ms +/- 1.0% +9.30%

1119.8ms +/- 0.9% 1181.2ms +/- 1.0% +5.19%

encoding of those three characters to 4 base64 encoded characters. In every iteration of
the loop, it will do 7 accesses to a specific character in the original string, 4 access to
a string which contains the valid base64 accesses and finally it will do 4 += operations
on the result string. Given that our countermeasure will need to transform and restore
the string multiple times, this causes a noticeable slowdown in this application.

Table 3. Peacekeeper Javascript Benchmarks results (the higher the better)

Benchmark Score BuBBle Score Perf. overh.
Rendering 1929 1919 +0.5%

Social Networking 1843 1834 +0.5%
Complex graphics 4320 4228 +2.2%

Data 2047 1760 +14.0%
DOM operations 1429 1426 +0.2%

Text parsing 1321 1298 +2.0%
Total score 1682 1635 +2.8

Peacekeeper: Peacekeeper is currently used to tune Mozilla Firefox. It will assign a
score based on the number of operations performed per second. The results of the
Peacekeeper benchmark are located in Table 3: for most tests in this benchmark, the
overhead is negligible, except for the Data test which has an overhead of 14%. The
Data test is a test which will do all kinds of operations on an array containing numbers
and one test which performs operations on an array containing strings of all possible
countries in the world. The operations on the strings containing all possible countries
are what contribute to the slow down in this benchmark: whenever a country is used,
the string is restored, whenever one is modified the resulting new string is transformed.

V8: The V8 Benchmark Suite is used to tune V8, the Javascript engine of Google
Chrome. The scores are relative to a reference system (100) and as with Peacekeeper,
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Table 4. V8 Benchmark Suite results (the higher the better)

Benchmark Score BuBBle Score Perf. overh.
Richards 151 143 +5.6%
DeltaBlue 173 167 +3.6%

Crypto 110 99.6 +10.4%
Ray Trace 196 193 +1.5%

EarlyBoyer 251 242 +3.7%
RegExp 174 173 +0.6%
Splay 510 501 +1.8%

Total score 198 193 +2.6

the higher the score, the better. Again, most overheads are negligible except for Crypto,
which has an overhead of 10.4%. Crypto is a test encrypts a string with RSA. To encrypt
this string the application does a significant number of string operations, resulting in
transformation and restoration occurring quite often.

These benchmarks show that for string intensive javascript applications that do lit-
tle else besides run string operations, the overhead can be significant, but not a show
stopper. In all other cases the overhead was negligible.

4.2 Memory Overhead

This section discusses the memory overhead of our countermeasure. This is done by
providing both an analytical description of our worst case scenario and providing a
measurement of the memory overheads that the benchmarks incur.

Theoretical memory overhead: An analytical study of memory usage has been con-
ducted in the case of our highest level of security. This is achieved when we want to
prevent the execution of the smallest shellcode by changing at least one character every
24 bytes. If s is the lenght of the smallest shellcode, the js Transform() function
will change the value of a random character every (s−k) bytes, k = 1...(s−1). In a real
life scenario k = 1 is sufficient to guarantee a lack of space for the smallest shellcode.
If the length of the original string is n bytes, the number of positions to transform will
be i = �n

s �. The array used to store the position and the original value of the transform
character will be 2i bytes long.

Memory usage: a numerical example Given the following data:

-----------------------------------------------------
original string length: n = 1 MB = 1.048.576 bytes
smallest shellcode length: s = 25 bytes
injected sequence length: r = 1 byte
-----------------------------------------------------

The number of positions will be i = � 1MB
s � = 43691 and the memory overhead for

the worst case will be 8.3%.
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Table 5. Memory overhead of BuBBle in action on three Javascript benchmarks suites

Benchmark Mem. usage (MB) BuBBle mem. usage (MB) Mem. overh.
Sunspider 88 93 +5.6%

V8 219 229 +4.2%
Peacekeeper 148 157 +6.5%

Average +5.3%

Memory overhead for the benchmarks: Table 5 contains measurements of the maxi-
mum memory in megabyte that the benchmarks used during their runtime. These values
were measured by starting up the browser, running the benchmarks to completion and
then examining the VmHWM entry in /proc/ < pid > /status. This entry contains
the peak resident set size which is the maximum amount of RAM the program has used
during its lifetime. Our tests were run with swap turned off, so this is equal to the actual
maximum memory usage of the browser. These measurements show that the overhead
is significantly less than the theoretical maximum overhead.

4.3 Security Evaluation

In this section we give a security evaluation of BuBBle. When running the Javascript
snippet of Fig.3 we are able to spray the heap in all cases: spraying means allocating
memory and this is not considered an action to be detected. However, when attempting
to execute the contents of sprayed objects, by a memory corruption, the attack will fail.
The instruction pointer landed within a sled will execute the byte instruction 0xCC at a
random position. This 1-byte instruction will call the interrupt procedure and execution
will be halted. The execution of the 0xCC sequence is sufficient to consider the sys-
tem under attack and to detect an unexpected execution. In fact, a legal access would
purge the string of the 0xCC sequence. A drawback of our countermeasure is that a
heap-spraying attack can still be performed by using a language other than Javascript
such as Java or C#. However, the design in itself gives a reasonably strong security
guarantee against heap-spraying attacks to be implemented for other browser supported
languages. Another way to store malicious objects to the heap of the browser would
be by loading images or media directly from the Internet. But this would generate a
considerable amount of traffic and loading time, making the attack clearly observable.5

5 Related Work

Several countermeasures have been designed and implemented to specifically protect
against heap-based attacks. Others have been designed to prevent memory corruption
in general. We provide an overview of some countermeasures against heap overflow
attacks in Section 5.2. A description of some countermeasures specifically designed to
protect against heap-spraying attacks in web browsers is provided in Section 5.1.

5 Heap spraying by content download might generate a traffic of hundreds of MBs. We are
confident that also a broadband internet access would make the attack observable.
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5.1 Heap-Spraying Defences

Nozzle: Nozzle is the first countermeasure specifically designed against heap-spraying
attacks to web browsers [23]. It uses emulation techniques to detect the presence of ma-
licious objects. This is achieved by the analysis of the contents of any object allocated
by the Web browser. The countermeasure is in fact implemented at memory allocator
level. This has the benefit of protecting against a heap-spraying attack by any scripting
language supported by the browser. Each block on the heap is disassembled and a con-
trol flow graph of the decoded instructions is built. A NOP-shellcode object may
be easily detected by this approach because one basic block in the control flow graph
will be reachable by several directions (other basic blocks). For each object on the heap
a measure of the likelihood of landing within the same object is computed. This mea-
sure is called attack surface area. The surface area for the entire heap is given
by the accumulation of the surface area of individual blocks. This metric reflects the
overall heap health. This countermeasure is more compatible than DEP and would help
to detect and report heap-spraying attacks by handling exceptions, without just crash-
ing. This approach has although some limitations. Because Nozzle examines objects
only at specific times, this may lead to the so called TOCTOU-vulnerability (Time-Of-
Check-Time-Of-Use). This means that an attacker can allocate a benign object, wait
for Nozzle to examine it, then change it to contain malicious content and trigger the
attack. Moreover Nozzle examines only a subset of the heap, for performance reasons.
But this approach will lead to a lower level of security. The performance overhead of
Nozzle examining the whole heap is unacceptable. Another limitation of Nozzle is the
assumption that a heap-spraying attack allocates a relatively small number of large ob-
jects. A design based on this assumption would not protect against a heap-spraying
which allocates a large number of small objects which will have the same probability
to succeed.

Shellcode detection: Another countermeasure specifically designed against heap-
spraying attacks to web browsers is proposed by [12]. This countermeasure is based
on the same assumptions that (1) a heap-spraying attack may be conducted by a special
crafted HTML page instrumented with Javascript and (2) Javascript strings are the only
way to allocate contiguous data on the heap. Thus all strings allocated by the Javascript
interpreter are monitored and checked for the presence of shellcode. All checks have
to be performed before a vulnerability can be abused to change the execution control
flow of the application. If the system detects the presence of shellcode, the execution of
the script is stopped. Shellcode detection is performed by libemu, a small library writ-
ten in C that offers basic x86 emulation. Since libemu uses a number of heuristics to
discriminate random instructions from actual shellcode, false positives may still occur.
Moreover an optimized version of the countermeasure that achieves accurate detection
with no false positives is affected by a significant performance penalty of 170%.

5.2 Alternative Countermeasures

Probabilistic countermeasures: Many countermeasures make use of randomness
when protecting against attacks. Canary-based countermeasures [21,24] use a secret
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random number that is stored before an important memory location: if the random num-
ber has changed after some operations have been performed, then an attack has been
detected. Memory-obfuscation countermeasures [6,10] encrypt (usually with XOR) im-
portant memory locations or other information using random numbers. Memory layout
randomizers [5,7,34] randomize the layout of memory: by loading the stack and heap
at random addresses and by placing random gaps between objects. Instruction set ran-
domizers [3] encrypt the instructions while in memory and will decrypt them before
execution. While these approaches are often efficient, they rely on keeping memory
locations secret. However, programs that contain buffer overflows could also contain
“buffer overreads” (e.g. a string which is copied via strncpy but not explicitly null-
terminated could leak information) or other vulnerabilities like format string vulner-
abilities, which allow attackers to print out memory locations. Such memory leaking
vulnerabilities could allow attackers to bypass this type of countermeasure. Another
drawback of these countermeasures is that, while they can be effective against remote
attackers, they are easier to bypass locally, because attackers could attempt brute force
attacks on the secrets.

DEP: Data Execution Prevention [29] is a countermeasure to prevent the execution of
code in memory pages. It is implemented either in software or hardware, via the NX
bit. With DEP enabled, pages will be marked non-executable and this will prevent the
attacker from executing shellcode injected on the stack or the heap of the application. If
an application attempts to execute code from a page marked by DEP, an access violation
exception will be raised. This will lead to a crash, if not properly handled. Unfortunately
several applications attempt to execute code from memory pages. The deployment of
DEP is less straightforward due to compatibility issues raised by several programs [2].

Separation and replication of information: Countermeasures that rely on separa-
tion or replication of information will try to replicate valuable control-flow information
[36,37] or will separate this information from regular data. This makes it harder for an
attacker to overwrite this information using an overflow. Some countermeasures will
simply copy the return address from the stack to a separate stack and will compare it
to or replace the return addresses on the regular stack before returning from a function.
These countermeasures are easily bypassed using indirect pointer overwriting where an
attacker overwrites a different memory location instead of the return address by using
a pointer on the stack. More advanced techniques try to separate all control-flow data
(like return addresses and pointers) from regular data, making it harder for an attacker
to use an overflow to overwrite this type of data. While these techniques can efficiently
protect against buffer overflows that try to overwrite control-flow information, they do
not protect against attacks where an attacker controls an integer that is used as an offset
from a pointer, nor do they protect against non-control-data attacks.

Execution monitors: In this section we describe two countermeasures that monitor
the execution of a program and prevent transferring control-flow which could be un-
safe. Program shepherding [20] is a technique that monitors the execution of a program
and will disallow control-flow transfers6 that are not considered safe. An example of

6 Such a control flow transfer occurs when e.g., a call or ret instruction is executed.
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a use for shepherding is to enforce return instructions to only return to the instruction
after the call site. The proposed implementation of this countermeasure is done using a
runtime binary interpreter. As a result, the performance impact of this countermeasure
is significant for some programs, but acceptable for others. Control-flow integrity [1]
determines a program’s control flow graph beforehand and ensures that the program
adheres to it. It does this by assigning a unique ID to each possible control flow destina-
tion of a control flow transfer. Before transferring control flow to such a destination, the
ID of the destination is compared to the expected ID, and if they are equal, the program
proceeds as normal. This approach, while strong and in the same efficiency range as our
approach, does not protect against non-control data attacks.

6 Conclusion

Heap-spraying attacks expect to have large parts of the heap which are homogenous.
By introducing heterogeneity where attackers expect this homogeneity, we can make
heap-based buffer overflows a lot harder. By modifying the way the strings are stored
in memory in the Javascript engine, we can achieve an effective countermeasure that
introduces this heterogeneity. This is done by inserting special values at random loca-
tions in the string, which will cause a breakpoint exception to occur if they are executed.
If an attacker tries to perform a heap-spraying attack, his injected code will now have
been interrupted at a random location with such a breakpoint exception, allowing the
browser to detect and report that an attack has occurred. Benchmarks show that this
countermeasure has a negligible overhead both in terms of performance and memory
overhead.
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13. Erlingsson, Ú.: Low-level software security: Attacks and defenses. Technical Report MSR-
TR-2007-153, Microsoft Research (November 2007)

14. Etoh, H., Yoda, K.: Protecting from stack-smashing attacks. Technical report, IBM Research
Divison, Tokyo Research Laboratory (June 2000)

15. Mozilla Foundation. Firefox 3.5b4 (2009), http://developer.mozilla.org
16. Google. V8 Benchmark Suite - version 5, http://v8.googlecode.com
17. Intel. Intel architecture software developer’s manual. vol. 2: Instruction set reference (2002)
18. E. C. M. A. International. ECMA-262: ECMAScript Language Specification. ECMA (Eu-

ropean Association for Standardizing Information and Communication Systems), 3rd edn.,
Geneva, Switzerland (December 1999)

19. Jorendorff: Anatomy of a javascript object (2008),
http://blog.mozilla.com/jorendorff/2008/11/17/
anatomy-of-a-javascript-object

20. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding. In:
Proceedings of the 11th USENIX Security Symposium, San Francisco, California, U.S.A.,
August 2002, USENIX Association (2002)

21. Krennmair, A.: ContraPolice: a libc extension for protecting applications from heap-
smashing attacks (November 2003)

22. FireEye Malware Intelligence Lab. Heap spraying with actionscript (2009),
http://blog.fireeye.com/research/2009/07/
actionscript heap spray.html

23. Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-spraying code
injection attacks. Technical report, Microsoft Research (November 2008)

24. Robertson, W., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-based over-
flows. In: Proceedings of the 17th Large Installation Systems Administrators Conference,
San Diego, California, U.S.A., October 2003, pp. 51–60. USENIX Association (2003)

25. securiteam.com. Heap spraying: Exploiting internet explorer vml 0-day xp sp2 (2009),
http://blogs.securiteam.com/index.php/archives/641

26. Securitylab. Adobe reader 0-day critical vulnerability exploited in the wild, cve-2009-0658
(2009), http://en.securitylab.ru/nvd/368655.php

27. skypher.com. Heap spraying (2007), http://skypher.com/wiki/index.php
28. Sotirov, A.: Heap feng shui in javascript (2007)
29. TMS. Data execution prevention,

http://technet.microsoft.com/en-us/library/cc738483.aspx
30. Wagle, P., Cowan, C.: Stackguard: Simple stack smash protection for gcc. In: Proceedings of

the GCC Developers Summit, Ottawa, Ontario, Canada, May 2003, pp. 243–256 (2003)

http://www.avertlabs.com/research/blog/index.php/2009/02/19/new-backdoor-attacks-using-pdf-documents/
http://www.avertlabs.com/research/blog/index.php/2009/02/19/new-backdoor-attacks-using-pdf-documents/
http://service.futuremark.com/peacekeeper/
http://developer.mozilla.org
http://v8.googlecode.com
http://blog.mozilla.com/jorendorff/2008/11/17/anatomy-of-a-javascript-object
http://blog.mozilla.com/jorendorff/2008/11/17/anatomy-of-a-javascript-object
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blog.fireeye.com/research/2009/07/actionscript_heap_spray.html
http://blogs.securiteam.com/index.php/archives/641
http://en.securitylab.ru/nvd/368655.php
http://skypher.com/wiki/index.php
http://technet.microsoft.com/en-us/library/cc738483.aspx


BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks 17

31. www2.webkit.org Sunspider javascript benchmark (2009),
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

32. www.milw0rm.com Safari (arguments) array integer overflow poc (new heap spray)
(2009), http://www.milw0rm.com/exploits/7673

33. www.packetstormsecurity.org 25bytes-execve (2009),
http://www.packetstormsecurity.org/shellcode/
25bytes-execve.txt

34. Xu, J., Kalbarczyk, Z., Iyer, R.K.: Transparent runtime randomization for security. In: 22nd
International Symposium on Reliable Distributed Systems (SRDS 2003), Florence, Italy,
October 2003, pp. 260–269. IEEE Computer Society, IEEE Press, Los Alamitos (2003)

35. Younan, Y., Joosen, W., Piessens, F.: Code injection in C and C++: A survey of vulnerabilities
and countermeasures. Technical report, Departement Computerwetenschappen, Katholieke
Universiteit Leuven (2004)

36. Younan, Y., Joosen, W., Piessens, F.: Efficient protection against heap-based buffer overflows
without resorting to magic. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307,
pp. 379–398. Springer, Heidelberg (2006)

37. Younan, Y., Pozza, D., Piessens, F., Joosen, W.: Extended protection against stack smashing
attacks without performance loss. In: Proceedings of the Twenty-Second Annual Computer
Security Applications Conference (ACSAC 2006), pp. 429–438. IEEE Press, Los Alamitos
(2006)

www2.webkit.org
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html
www.milw0rm.com
http://www.milw0rm.com/exploits/7673
www.packetstormsecurity.org
http://www.packetstormsecurity.org/shellcode/25bytes-execve.txt
http://www.packetstormsecurity.org/shellcode/25bytes-execve.txt

	BuBBle: A Javascript Engine Level Countermeasure against Heap-Spraying Attacks
	Introduction
	Problem Description
	Heap-Based Buffer Overflows
	Heap-Spraying Attacks

	BuBBle: Protection against Heap-Spraying
	Approach
	Implementation

	Evaluation
	Performance Benchmarks
	Macrobenchmarks:
	Microbenchmarks:

	Memory Overhead
	Theoretical memory overhead:
	Memory overhead for the benchmarks:

	Security Evaluation

	Related Work
	Heap-Spraying Defences
	Nozzle:
	Shellcode detection:

	Alternative Countermeasures
	Probabilistic countermeasures:
	DEP:
	Separation and replication of information:
	Execution monitors:


	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




