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ABSTRACT
Many countermeasures exist that attempt to protect against buffer
overflow attacks on applications written in C and C++. The most
widely deployed countermeasures rely on artificially introducing
randomness in the memory image of the application. StackGuard
and similar systems, for instance, will insert a random value before
the return address on the stack, and Address Space Layout Ran-
domization (ASLR) will make the location of stack and/or heap
less predictable for an attacker.

A critical assumption in these probabilistic countermeasures is
that attackers cannot read the contents of memory. In this paper we
show that this assumption is not always justified. We identify a new
class of vulnerabilities – buffer overreads – that occur in practice
and that can be exploited to read parts of the memory contents of
a process running a vulnerable application. We describe in detail
how to exploit an application protected by both ASLR and stack
canaries, if the application contains both a buffer overread and a
buffer overflow vulnerability.

We also provide a detailed discussion of how this vulnerability
affects other, less widely deployed probabilistic countermeasures
such as memory obfuscation and instruction set randomization.

Categories and Subject Descriptors
D [4]: 6

General Terms
systems security
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1. INTRODUCTION
Security is an important concern for all computer users: worms

and hackers have become part of everyday internet life. A particu-
lar insidious vulnerability is the buffer overflow. This vulnerability
is a significant threat to the security of a system. Most of the exist-
ing buffer overflow vulnerabilities are located on the stack, and the
most common way for attackers to exploit such a buffer overflow
is to modify the return address of a function. By making the return
address point to code they injected into the program’s memory as
data, they can force the program to execute any instructions with
the privilege level of the program being attacked [1].

Buffer overflows still occur often in real world programs: ac-
cording to the NIST’s National Vulnerability Database (NVD) [25],
563 buffer overflow vulnerabilities were reported in 2008, making
up 10% of the total 5,634 vulnerabilities reported in that period,
only preceded by Cross Site Scripting vulnerabilities (14 %) and
SQL injection vulnerabilities (19.5 %). Of those buffer overflow
vulnerabilities, 436 had a high severity rating. As a result, buffer
overflows make up 15% of the 2,853 vulnerabilities with a high
severity rating reported in 2008, second only to SQL injection vul-
nerabilities (28.5 %).

Probabilistic countermeasures are countermeasures that try to
prevent code injection attacks by making use of random data. Ran-
domness can be used in a variety of ways to build countermeasures:
random information can be stored at a memory location and it can
later be verified to be unchanged [15, 17, 27, 23], data and code can
be stored at random locations in memory [34, 6], data and code can
be obfuscated by applying an XOR on the byte representation of
the data or code together with a random value [5, 21, 14, 7]. This
type of countermeasures makes it harder for attackers to overwrite
data if it’s either obfuscated or if there is a random unknown value
stored in memory that can not be modified. In the case of storing
data at random locations, attackers are faced with the problem that
their injected code is not stored at a predictable location in memory,
making it hard to direct control flow to it. A more detailed survey
of probabilistic and other types of countermeasures can be found in
[39, 38].

An important assumption for this type of countermeasures is
that data in memory is kept secret. However this assumption is
not necessarily a valid assumption, especially in programs that al-
ready contain buffer overflows. While format string vulnerabilities
are often cited as a typical way of achieving information leakage,



which could result in bypassing these countermeasures, this type of
vulnerabilities has become rare: according to the NVD, 24 format
string vulnerabilities were reported in 2008, accounting for 0.4%
of all vulnerabilities found in that year.

In this paper we present a realistic vulnerability1, which we call a
buffer overread, that results in the memory-secrecy assumption be-
ing violated, allowing attackers to bypass such probabilistic coun-
termeasures. We discuss a typical instantiation of this vulnerability
and provide an exploit that bypasses both ASLR and Propolice on
a typical computer running Linux R©, even when both these coun-
termeasures are used concurrently.

The rest of this paper is structured as follows: Section 2 briefly
recaps buffer overflows and how attackers can abuse this type of
vulnerabilities. Section 3 describes how probabilistic countermea-
sures work and discusses different types of probabilistic counter-
measures and provides details on some specific implementations.
Section 4 provides a proof-of-concept of a simple application and
a matching exploit which bypasses both ASLR [34, 6] and Propo-
lice [17] protection on a standard Linux R© machine. Section 5 dis-
cusses if and how this vulnerability could form a problem for other
types of probabilistic countermeasures. In Section 6 an overview of
related work is provided, while Section 7 presents our conclusion.

2. BUFFER OVERFLOWS
Buffer overflows are the result of an out of bounds write opera-

tion on an array. In this section we briefly recap how an attacker
could exploit such a buffer overflow. A detailed overview of how a
buffer overflow can be exploited, can be found in [1].

Buffers can be allocated on the stack, the heap or in the data/bss
section in C. For arrays that are declared in a function body, space is
reserved on the stack. Buffers that are allocated dynamically (using
the malloc function, or some other variant), are put on the heap,
while arrays that are global or static are allocated in the data/bss
section. The array is manipulated by means of a pointer to the
first byte. Bytes within the buffer can be addressed by adding the
desired index to this base pointer.

Listing 1: A C function that is vulnerable to a buffer overflow.

vo id copy ( c h a r ∗ s r c , c h a r ∗ d s t ) {
i n t i = 0 ;
c h a r c u r r = s r c [ 0 ] ;
w h i l e ( c u r r ) {

d s t [ i ] = c u r r ;
i ++;

c u r r = s r c [ i ] ;
}

}

At run-time, no information about the array size is available.
Consequently, most C-compilers will generate code that will allow
a program to copy data beyond the end of an array. This behavior
can be used to overwrite data in the adjacent memory space. If this
adjacent memory space contains data that influences control flow,
an attack can be mounted. The stack usually contains control flow
data: it stores the addresses to resume execution at, after a function
call has completed its execution. This address is called the return
address. Manipulating the return address might give the attacker
the possibility to execute arbitrary code. In addition to the return
address, the contents of other variables on the stack might also be

1A buffer overread occurred in the syslogd daemon that was
shipped with FreeBSD R© 3.2 [35]

overwritten. This could be used to manipulate the results of previ-
ous calculations or checks.

Likewise, the heap also often contains important memory man-
agement information right before the allocated buffer [40]. By ma-
nipulating this information, an attacker can control the execution
path of the process when the application frees the allocated mem-
ory.

Listing 1 shows a straightforward string copy function. Improper
use of this function can lead to a buffer overflow, because there is
no validation that the destination buffer can actually hold the input
string. An attacker can thus use the buffer overflow to overwrite
memory that is stored adjacent to the destination buffer.

3. PROBABILISTIC COUNTERMEASURES
Many countermeasures make use of randomness when protect-

ing against attacks. Many different approaches exist when using
randomness for protection. Canary-based countermeasures use a
secret random number that is stored before an important memory
location: if the random number has changed after some operations
have been performed then an attack has been performed; and thus
the attack is detected. Memory-obfuscation countermeasures en-
crypt (usually with XOR) important memory locations or other in-
formation using random numbers. Address space layout random-
izers randomize the layout of memory: by loading the stack and
heap at random addresses and by placing random gaps between ob-
jects. Instruction set randomizers encrypt the instructions while in
memory and will decrypt them before execution.

These probabilistic countermeasures are widely deployed: Win-
dows Vista contains ASLR [19] and a version of a memory ob-
fuscator [20], while Visual Studio supports a canary-based defense
since its 2002 release [8] . The Linux kernel also contains ASLR
for the stack since kernel version 2.6.12 [11], while GCC has an
implementation of Propolice since version 4.1 [18]. Mac OS X has
also contained ASLR for libraries since Leopard [4].

3.1 Canaries
The observation that attackers usually try to overwrite the re-

turn address when exploiting a buffer overflow led to a sequence
of countermeasures that were designed to protect the return ad-
dress. One of the earliest examples of this type of protection is
the canary-based countermeasure [15]. This type of countermea-
sures protects the return address by placing a value below it on the
stack that must remain unchanged during program execution. Upon
entering a function the canary is placed on the stack below the re-
turn address. When the function returns, the canary stored on the
stack will be compared to the original canary. If the stack-stored
canary has changed, an overflow has occurred and the program can
be safely terminated. A canary can be a random number, or a string
that is hard to replicate when exploiting a buffer overflow (e.g., a
NULL byte). StackGuard [13, 15] was the first countermeasure
to use canaries to offer protection against stack-based buffer over-
flows. However, attackers soon discovered a way of bypassing it
using indirect pointer overwriting. They would overwrite a local
pointer in a function and make it point to a target location. When
the local pointer is dereferenced for writing, the target location is
overwritten without modifying the canary [10]. Propolice [17] is an
extension of StackGuard: it prevents indirect pointer overwrites by
reordering the stack frame so that buffers can no longer overwrite
pointers in a function. This is done by storing all buffers local to
a function right below the canary, this prevents buffers from over-
writing pointers local to a function.

Canaries are also used to protect other memory locations, like
the management information of the memory allocator that is often



overwritten using a heap-based buffer overflow [27, 23].

3.2 Memory-obfuscation
Memory-obfuscation countermeasures use an approach that is

closely related to canaries: their approach is also based on random
numbers. These random numbers are used to ‘encrypt’ specific data
in memory and to decrypt it before using it in an execution. These
approaches are currently used for obfuscating pointers (XOR with
a secret random value) while in memory [14]. When the pointer
is later used in an instruction it is first decrypted in a register (the
decrypted value is never stored in memory). If an attacker attempts
to overwrite the pointer with a new value, it will have the wrong
value when decrypted. This will most likely cause the program to
crash.

Data space randomization (DSR) encrypts the representation of
data stored in memory [7]. It performs a program transformation to
encrypt each value before it is stored and to decrypt it again before
being used. DSR was developed to protect against non-control data
attacks as well as code injection attacks.

Ignoring optimizations, this transformation can be split in three
steps. First, for each data object in the program2, a mask is gen-
erated. Second, when object a is assigned value v, the program is
modified to store the outcome of the expression v ⊕ ma instead,
with ma being the mask of a. Finally all expressions are trans-
formed to decrypt the values before they are being used. While not
preventing buffer overflows, these transformations will make them
harder to exploit.

3.3 Address Space Layout Randomization
ASLR [34, 6] is another approach that makes executing injected

code harder. Most exploits expect the memory segments to always
start at a specific known address. They will attempt to overwrite the
return address of a function, or some other interesting address with
an address that points into their own code. However for attackers to
be able to point to their own code, they must know where in mem-
ory their code resides. If the base address is generated randomly
when the program is executed, it is harder for the exploit to direct
the execution-flow to its injected code because it does not know the
address at which the injected code is loaded.

3.4 Instruction Set Randomization
Instruction set randomization [5, 21] is another technique that

can be used to prevent the injection of attacker-specified code. ISR
prevents an attacker from injecting any foreign code into the appli-
cation by encrypting instructions on a per process basis while they
are in memory and decrypting them when they are needed for ex-
ecution. Attackers are unable to guess the decryption key of the
current process, so their instructions, after they’ve been decrypted,
cause the wrong instructions to be executed. This prevents attack-
ers from having the process execute their payload and has a large
chance crashing the process due to an invalid instruction being ex-
ecuted.

4. BUFFER OVERREAD VULNERABIL-
ITIES

An overarching problem with probabilistic countermeasures is
that they rely on memory being kept secret. However this is an as-
sumption which relies on the absence of other particular vulnerabil-
ities. One example of a vulnerability which breaks this assumption
2One of the proposed optimizations only masks data objects that
can be overflowed. Modification to the memory layout of the pro-
gram will prevent these from causing security vulnerabilities.

is a format string vulnerability. Where an attacker can print out ar-
bitrary memory locations. However, other vulnerabilities may exist
which can cause similar effects. In this section we describe a real-
istic vulnerability that can be used to bypass probabilistic counter-
measures: a buffer overread vulnerability. We will also show how
this type of vulnerabilities could be used by an attacker to bypass
probabilistic countermeasures.

A typical way of fixing a buffer overflow vulnerability due to
wrongful use of the strcpy function is to replace it with a call to the
strncpy function and to provide a maximum size to be copied. For
example, Listing 2 shows how a strcpy is correctly replaced by a
strncpy. However, this example also demonstrates a problem that
can occur when such a replacement is done: strncpy has slightly
different semantics than strcpy: while strcpy will always ensure
that the destination string is NULL-terminated, strncpy makes no
such guarantees. If buff contains 100 or more characters, then user
will not be terminated. Subsequent use of user in string operations
could result in buffer overreads or even in buffer overflows. Such a
vulnerability occurred in the syslogd daemon that was shipped with
FreeBSD R© 3.2 [35].

Listing 2: Any client that connects to the server will be asked
a username and a password. After receiving this information
in a buffer, it is copied in a separate array using the strcpy and
strncpy functions. The exploit takes advantage of vulnerabili-
ties in the use of these functions.
vo id h a n d l e C o n n e c t i o n ( i n t s o c k e t ) {

char u s e r [ 1 0 0 ] ;
char p a s s [ 2 0 0 ] ;
char b u f f [ 4 0 0 ] ;
i n t c = 0 ;

s t r n c p y ( bu f f , "USER : " , 1 0 0 ) ;
send ( s o c k e t , bu f f , 7 , 0 ) ;
r e c v ( s o c k e t , bu f f , 4 0 0 , 0 ) ;
s t r n c p y ( use r , bu f f , 1 0 0 ) ;
s n p r i n t f ( bu f f , 4 0 0 , " H e l l o %s \ nPASS : " ,

u s e r ) ;
c = s t r l e n ( b u f f ) + 1 ;
send ( s o c k e t , bu f f , c , 0 ) ;
r e c v ( s o c k e t , bu f f , 4 0 0 , 0 ) ;
s t r c p y ( pass , b u f f ) ;
s t r n c p y ( bu f f , " Logged i n " , 1 0 0 ) ;
send ( s o c k e t , bu f f , 2 3 , 0 ) ;

}

Listing 2 represents a server that contains a buffer overread and
a buffer overflow vulnerability that can be abused by an attacker
to inject code even if this application is protected by both Propo-
lice and ASLR. The application and the exploit were performed
on an emulated (Qemu 0.9.1) ARM R© processor running Debian R©
GNU/Linux R© 4.0, but would be equally applicable to an IA32 ar-
chitecture. However, the ARM architecture was chosen because of
the growing number of mobile devices that contain such proces-
sors, making it a more widely used processor even than the IA32
[22].

The attack, for which we developed a working exploit, works as
follows: a client process connects to the server. The server replies
with a request to transmit the username. When the client sends its
username to the server, it is received in the buff -array. Afterwards it
is copied to the smaller, 100 characters long, user-array by calling



the strncpy function3. This function will prevent a buffer overflow
on the user variable, however, as was noted earlier, it won’t always
add a NULL character. To successfully execute the buffer overread,
this behavior is exploited. Therefore the client will return a series
of 100 or more characters. After the server receives the client’s
username, it constructs a personalized message to ask for the pass-
word. This is achieved by applying the snprintf function, which
keeps copying characters of the username until a NULL character
is reached. In a previous step, the use of the strncpy function was
exploited to prevent the occurrence of such a character. As a result,
the process will leak valuable information in this step.

On both the IA32 architecture and the ARM R© architecture run-
ning Linux R©, the stack grows down4 by default. This causes the
buffer overread to read information stored on the stack prior to the
buffer. Figure 1 displays the stack layout of the handleConnec-
tion function. Note that the compiler placed the user buffer next to
the canary, followed by the stack (SP) and frame pointer (FP) and
the return address (LR). When the snprintf function prints out the
user variable, it will continue reading data stored behind it and will
print out the canary, stack pointer and frame pointer. Given that the
code segment starts at a relatively low address in the virtual address
space of the program, it will most likely contain a NULL character
(at least on the ARM R© architecture), causing the snprinf function
to terminate. However, leakage of the canary and either the stack
or frame pointer is sufficient to bypass both the canary-based pro-
tection and ASLR.

The next step in the attack is to use the information returned
from the snprintf to exploit the vulnerable strcpy5. This results
in an exploit where pass is overflowed. From Figure 1, we can
conclude that 300 bytes can be used for the shellcode (pass+user),
followed by the canary, an arbitrary frame and stack pointer, finally
followed by the address of pass, which can be derived from the
leaked frame or stack pointer address. When the handleConnection
function returns, the injected shellcode will be executed.

In StackGuard, the stack may contain integers between the buffer
and the canary. Since integers have a higher probability of contain-
ing a NULL byte because they often contain relatively small num-
bers, this could thwart the attack presented above. However since
Propolice reorganizes the stack frame to prevent indirect pointer
overwrites, it facilitates a buffer overread by ensuring that all buffers
are stored right below the canary.

Exploitation of this vulnerability is analogous on a typical Linux R©
machine running on the IA32 architecture: the stack will contain
the user buffer followed by the canary, the frame pointer and the
return address. Leakage of the canary and frame pointer is suffi-
cient information to bypass both protections.

5. DISCUSSION
Probabilistic countermeasures introduce diversity into the de-

ployment of operating systems and applications, which can be an
effective defense against simple automated attacks, like most worms.
However, relying on the secrecy of memory locations may not be
sufficient to stop a determined attacker. In fact, this determined at-
tacker could, if a buffer overread is present, also create a worm that

3Simply using the recv function (i.e. without explicitly terminating
buff after the recv call) would result in a similar buffer overread
vulnerabiilty.
4From higher addresses to lower addresses.
5Our use here of an strcpy function in the same function as that
strncpy functions are used is a bit artificial to demonstrate the vul-
nerability, but it not unthinkable that a program may contain a
buffer overflow in another function or due to the misuse of some
other string manipulation function.

Figure 1: This figure displays the memory layout of the han-
dleConnection function. It also shows the result of the attack.
Memory locations marked with an “*” were updated by the ex-
ploit.

automatically reads out the secret information and could use this
information to exploit a subsequent buffer overflow. In this section
we discuss some variations on the previously described attack.

5.1 Library functions that could result in a
buffer overread

While we demonstrate the vulnerability here by a misuse of the
strncpy function, a number of other standard C library functions
have similar behavior in that memory will be written to, but will
not be NULL terminated by default [35]: recv, fread, read, readv,
pread, memcpy, memccpy, memmove, bcopy, gethostname, strncpy,
strncat. On top of that, manually coded array manipulation may
also not correctly terminate arrays.

5.2 Partial leakage of information
If either the canary or the frame or stack pointer contain a NULL

character, then the overread will terminate prematurely. However,
this will also provide the attacker with information. If the canary
contains a NULL byte as its last byte, the maximum amount of
randomness of the canary is reduced to 224. If third is NULL, then
the maximum amount of randomness is 216. If the second byte
is NULL, just 256 possible canaries remain. If the first byte is
NULL then the canary can be fully reconstructed. The presence of a
NULL byte in the canary can however make it harder for attackers,
as they must also replicate this when performing a buffer overflow.
A similar approach can be applied to the available randomness of
ASLR in the case the frame pointer contains a NULL byte, except
that the attacker does not need to replicate the NULL character as
the frame pointer does not necessarily need to be restored to its
original value.



5.3 Similar attacks
A similar type of attacks to the one described in the previous

section could be performed by exploiting an off-by-one overflow
vulnerability to overwrite the NULL byte of a buffer that is later
printed out, causing the buffer to no longer be NULL terminated.
This can allow attackers to print out adjacent memory locations,
they can subsequently use the information disclosed by the printed
buffer to bypass the countermeasure in a subsequent vulnerability.

5.4 Other types of canaries
Two other types of canaries exist [12, 36] besides the random

canary we discussed earlier: the terminator canary and the random
XOR canary.

A terminator canary contains different bytes that will stop dif-
ferent string operations if an attacker tries to replicate them. For
example, the terminator canary discussed in [12] contains the fol-
lowing characters: a NULL byte, a carriage return, a line feed and
an EOF character. Since the terminator canary contains a NULL
byte, it will terminate the buffer overread. However, not all copy-
ing operations (e.g., memcpy) will terminate on one of these char-
acters. An attacker can also bypass the terminator canary by using
multiple buffer overflows: the first buffer can overwrite the return
address as usual, while the second overflow restores the termina-
tor canary. As a result of these two attacks, the random canary is
generally preferred.

The random XOR canary [36] will encrypt the return address
with a random value and will decrypt it when used. This actually
turns the canary-based countermeasure into a memory obfuscator.
As such, we will discuss this type of canares together with the other
memory obfuscators in Section 5.6.1.

5.5 Buffer overreads in other areas of mem-
ory

We focussed mostly on a stack-based buffer overread for our ex-
ample, since canaries are currently only widely used to protect the
stack and not the heap. However, the attack is just as viable on the
heap. If canaries are present on the heap as in Heap-protector [27]
and ContraPolice [23], an attacker that is able to perform a buffer
overread can also read out the canaries.

In heap-based buffer overflows, the attacker will try to overwrite
pointers stored in this memory and will use these pointers to per-
form an indirect pointer attack. However, the program does not
always store pointers on the heap, making this approach not al-
ways applicable. A more general approach that may be used by
attackers is to overwrite the memory management information that
is used by memory allocators. For every chunk of memory un-
der its control, the memory allocator under many operating sys-
tems will store management information next to it [40]. Since
these memory allocators will often store pointers in the manage-
ment information, they provide a reliable and portable way (i.e.,
not-application dependent) of performing an indirect pointer over-
write. When the modified management information is subsequently
used by the memory manager, the indirect pointer overwrite is per-
formed [30, 3].

In [27], the management information is protected by generat-
ing a checksum of the management information, encrypting (XOR)
this checksum with a canary and then storing this checksum to-
gether with the management information. Before the management
information is used, the checksum is calculated, encrypted and ver-
ified with the stored checksum. If the checksums do not match,
the application is terminated. If attackers are able to perform a
buffer overread, they can read out the encrypted checksum and
since they know the other information in the chunk, generate the

current checksum and extract the key. In a subsequent buffer over-
flow, the attacker can replace the stored checksum with one that
matches the updated management information. An issue that at-
tackers may run into when performing a buffer overread on the
management information has to do with the size of the chunk. If
the size of the chunk is stored in the management information be-
fore the checksum, this could stop the buffer overread. The size is
stored in a 32-bit integer, however it will often be smaller than 25
bits, meaning that the size will contain a NULL byte; this could
thwart the buffer overread.

In [23], a canary is stored before and after each chunk of mem-
ory. After each string operation on heap memory, a check is per-
formed to ensure that the canary stored before the chunk still matches
the canary stored after the chunk. A buffer overread could allow at-
tackers to find out the canary and reuse it when performing a buffer
overflow. The size issue is not of importance here because the ca-
nary is stored right before and after the chunk, which means that the
size field is stored after the canary in memory. However since this
approach stores two canaries, they do not need to be the same for
each chunk. This makes the attack harder to execute: the overread
must occur on either the same chunk as the overflow or the chunk
must lie right behind or before it so the overread is able to read it6.
If the overflow occurs in a chunk that lies too far from the overread,
the size field again becomes an issue, because it would prevent the
attacker from reading adjacent chunks.

5.6 Other probabilistic countermeasures
In Section 4 we focussed on two particular types of probabilistic

countermeasures: canaries and ASLR, because they are widely de-
ployed and implementations are readily available. However other
types of probabilistic countermeasures also suffer, in varying de-
grees, from information leakage problems. In this section we ana-
lyze if and how buffer overread vulnerabilities impact these coun-
termeasures. Because these countermeasures are mostly still in the
research domain and no implementations are currently available,
we limited our discussion to an analytical evaluation.

5.6.1 Memory-obfuscation

PointGuard.
A buffer overread combined with a buffer overflow, could allow

a similar attack as described in Section 4. However in this case,
the buffer overread would be used to read out an encrypted pointer.
The attacker could then use the encrypted pointer (EP) and the orig-
inal value of the pointer (P)7, to figure out the encryption key (K),
due to the following formula: P ⊕K = EP , which due to the na-
ture of XOR also results in the following: EP ⊕ P = K. Even if
this countermeasure is combined with canaries, an attacker would
be able to bypass the protection, assuming that return address is
protected by PointGuard. ASLR combined with PointGuard and
canaries could make the attack slightly harder: because the orig-
inal value of the frame pointer is not known, it is not possible to
directly figure out the key from the encrypted value stored on the
stack. However, when multiple pointers are stored on the stack,
this could simplify the attack. On ARM R© Linux R©, the stack con-
tains both the frame pointer and stack pointer and since the relative
distance between both is unchanged in ASLR, this allows attackers

6Since the canary is stored before and after each chunk, two ca-
naries will be stored right next to each other, allowing an overread
to read both.
7An attacker can determine the original value of the pointer from
running an unprotected version of the program when developing
the exploit



to figure out atleast one, possibly two (depending on the relative
distance between the two pointers) bytes of the randomization, sig-
nificantly reducing the actual randomization. If it is not combined
with the reordering canaries, then it may be easier for attackers to
get multiple pointers, with larger relative distances from the frame
and stack pointers, which could allow attackers to figure out up to
3 bytes of randomization. This leaves a randomization of only 256
possibilities, which is easily bypassed by a persistent attacker.

PointGuard is a generalization of the random XOR canary dis-
cussed in 5.4, as such the random XOR canary suffers from the
exact same problems.

Data Space Randomization.
By using an overread and overwrite of the same buffer, this coun-

termeasure can be defeated. Consider following structure:

s t r u c t User {
unsigned i n t u i d ;
char name [ 1 0 0 ] ;

} ;

When an overread of the name buffer occurs, the value of uid, p,
will be returned. However, when DSR is applied, it will encrypt the
value of uid in memory as follows: c = p⊕muid ⊕mname, with
muid and mname being the mask of uid and name respectively.
Assuming a user knows his id (p), muid ⊕ mname = p ⊕ c can
be calculated. Using this key, the attacker can change value p in p′

by injecting p′ ⊕ muid ⊕ mname using a buffer overflow. Since
the application will “encrypt” the data before storing it, the value
of uid will be overwritten as being p′ ⊕ muid. As a result, when
accessing the data stored in uid, p′ will be read instead of p.

5.6.2 Instruction set randomization
ISR also suffers from information leakage problems: if the en-

crypted instructions are leaked, attackers can easily determine the
encryption key in the same manner as they would for PointGuard.
Subsequently they can encrypt their injected shellcode with the
same key, allowing correct execution of their shellcode.

One advantage this technique has over other similar techniques
is that a simple buffer overread will not allow an attacker to extract
the encrypted instructions from memory. Instead, an attacker would
need to overwrite a pointer to point to this memory. This pointer
should then subsequently be used to provide output to the attacker.
This, as well as other attacks against ISR, are described in [37].

6. RELATED WORK
The domain of circumventing countermeasures has matured to-

gether with the domain of countermeasures. In this section we ex-
amine some of the related work in the domain of circumventing
probabilistic countermeasures.

6.1 Canaries
Indirect pointer overwriting [10] was an important attack in which

attackers would overwrite a function local pointer and make it point
to a desired location. If the pointer is subsequently dereferenced for
writing with a value that is controlled by the attackers, the canary-
based countermeasure could be bypassed. This led to the creation
of Propolice which would reorder the local stack, thereby placing
all buffers above all pointers in a stack frame, thus preventing a
buffer from overwriting a function local pointer.

Richarte [26] discusses four different ways of defeating Stack-
Guard. Three of them consist of changing the frame pointer, while
the forth attack tries to change the arguments of a function. All
four attacks are solved by Propolice since it also protects the frame

pointer and provides protection for the arguments by copying them
below the buffers and using those inside the function.

Litchfield [24] describes an attack to bypass an earlier version
of the canary implementation in Visual Studio R© [9]. Windows R©
stores the function pointers for exception handling on the stack.
Attackers able to perform a buffer overflow can ignore the return
address and canary and continue to write on the stack until these ex-
ception handling pointers are made to point to their injected code.
Subsequently an exception is generated (e.g., a stack overflow ex-
ception or canary mismatch exception), causing the injected code
to be executed.

6.2 Address space layout randomization
Shacham et al. [28] examine limitations to the amount of ran-

domness that ASLR can use8. Their paper also describes a guess-
ing attack that can be used against programs that use forking, as
the forked applications are usually not rerandomized, which could
allow an attacker to keep guessing by causing forks and then trying
until the address is found.

In [16] a technique is discussed to bypass ASLR applied to li-
brary functions. The relative offset of the return address of the
main function to an interesting libc function is calculated. Since
main returns to libc, this will have the correct address range of libc.
By partially overwriting this return address to change the bytes cal-
culated by the relative offset, the attacker can now modify main’s
return address to perform a return-into-libc attack.

6.3 Memory-obfuscation
A problem with the approach taken by PointGuard is that XOR

encryption is bytewise encryption. If an attacker only needs to over-
write one or two bytes instead of the entire pointer, then the chances
of guessing the pointer correctly vastly improve (from 1 in 4 billion
to 1 in 65000) [2]. If the attacker is able to control a relatively large
amount of memory (e.g., with a buffer overflow), then the chances
of a successful attack increase even more. While it is possible to use
better encryption, it would likely be prohibitively expensive since
every pointer needs to be encrypted and decrypted this way.

6.4 Instruction-set Randomization
In [33] an attack is discussed which tries to brute force the key

by guessing the key one byte at a time: by using a 1 or 2 byte
instruction of which can be determined if it executed correctly, the
key can be brute forced. This technique requires the key to remain
constant between incorrect guesses. As such, the attack must be
performed on a program which is not rerandomized at start-up or
which forks children that can be used in the attack, since forking a
child will not rerandomize the process.

In [37], a number of attack vectors against ISR are discussed,
mainly related to extracting encrypted code from memory and then
using this as an attack vector as discussed in Section 5.6.2. Most
other attacks in the paper discuss guessing attacks, where attackers
know a number of bytes and then execute a small loader to guess
the rest of the key. Another attack assumes that the attackers are
able to manipulate the generation of the key9.

8This limitation is due to address space limitations in 32-bit archi-
tectures: often countermeasure will limit randomness to a maxi-
mum amount of bits, which will be less than 32 bits, making guess-
ing attacks a possibility.
9In the particular implementation of the ISR examined in the paper,
/dev/urandom is used to generate the key. If attackers are able to
redirect the file descriptor to a file descriptor they can control, they
can choose the key that is used for encryption



6.5 Other related work
In [35] non-terminated adjacent memory spaces are discussed in

the context of being exploitable because more data will be copied
than expected. In this context it is not presented as a technique for
bypassing countermeasures, but a general technique for exploiting
non-typical buffer overflows.

Sotirov and Dowd [32] discuss how to bypass the probabilistic
(and other) countermeasures present in Windows Vista R© by us-
ing browser exploits to bypass the countermeasures, allowing the
attackers to exploit the underlying Windows Animated Cursor vul-
nerability10 [31].

In a presentation by Soeder [29] related vulnerabilities that can
bypass memory secrecy are discussed.

7. CONCLUSION
Probabilistic countermeasures make a number of assumptions

which leave them vulnerable to attacks from different avenues.
Firstly, the memory-secrecy assumption can not be assumed to

always hold (e.g., due to buffer overread or format string vulnera-
bilities), especially in programs which turn out to be vulnerable to
buffer overflows, as these are likely to contain other bugs as well.

Secondly, XOR is a weak encryption when the original value is
known or can be extrapolated. An attacker can simply combine the
original value with the encrypted value and extract the encryption
key, bypassing the protection entirely. Further problems also exist
for XOR encryption due to its bitwise character as was demon-
strated in [2]. The problem also applies to buffer overreads: if
attackers can only read 1 or 2 bytes of the encypted value, they
can still modify those values. Using better encryption which would
make it harder to determine the key even when the encrypted value
is known or which are not bitwise operations would most likely be
prohibitively expensive unless hardware support for the encryption
operation is provided.

Although the wide application of probabilistic countermeasures
has made it harder for attackers to exploit simple buffer overflows,
the authors conclude from the weaknesses inherent in these coun-
termeasures that exploits bypassing these protections – even when
they are combined – are feasible and may become increasingly
common in the future.
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