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Abstract. Code injection attacks that target the control-data of an ap-
plication have been prevalent amongst exploit writers for over 20 years.
Today however, these attacks are getting increasingly harder for attack-
ers to successfully exploit due to numerous countermeasures that are
deployed by modern operating systems. We believe that this fact will
drive exploit writers away from classic control-data attacks and towards
data-only attacks. In data-only attacks, the attacker changes key data
structures that are used by the program’s logic and thus forces the control
flow into existing parts of the program that would be otherwise unreach-
able, e.g. overflowing into a boolean variable that states whether the
current user is an administrator or not and setting it to “true” thereby
gaining access to the administrative functions of the program.
In this paper we present ValueGuard, a canary-based defense mechanism
to protect applications against data-only buffer overflow attacks. Value-
Guard inserts canary values in front of all variables and verifies their
integrity whenever these variables are used. In this way, if a buffer over-
flow has occurred that changed the contents of a variable, ValueGuard
will detect it since the variable’s canary will have also been changed. The
countermeasure itself can be used either as a testing tool for applications
before their final deployment or it can be applied selectively to legacy or
high-risk parts of programs that we want to protect at run-time, without
incurring extra time-penalties to the rest of the applications.
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1 Introduction

The buffer overflow is probably the most widely known programming error. It
has been used by attackers for over 20 years to exploit programs that do poor
handling of user input. The most known computer worms, Morris Worm [31],
Code Red [23] and SQL Slammer [22] all used a buffer overflow in vulnerable
software as their primary way of attacking and infecting new hosts. Even though
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the attack is well understood and many solutions have been proposed over the
years, buffer overflows continue to plague modern and legacy software, which
is written in unsafe languages. SANS application security blog currently ranks
the “classic buffer overflow” as third in their list of twenty-five most dangerous
programming errors [29].

Buffer overflows are commonly associated with an attacker placing code of
his choice in a variable of the vulnerable program and then using the overflow
itself to overwrite a memory location that is used to dictate the control-flow of
the running program. Such memory locations are return-addresses, saved base
pointers, function pointers and so on. These attacks are called control-data at-
tacks since they target data that is used to control the application’s behavior.
Since these attacks are the most prevalent, academics and the programming in-
dustry itself has focused most of their efforts in protecting the control-data of an
application. Stackguard [12] and DEP [21], two widely used countermeasures in
modern operating systems are geared towards protecting control-data attacks.
The former protects the return address in each stack-frame from overwrites by
placing a canary in-front of it and checking its integrity before the function is
allowed to return. The latter tries to stop an attacker by marking the stack and
the heap memory pages of the current running process as non-executable. Even
if an attacker somehow manages to gain control of the execution-flow of the
process, he can no longer execute code that he earlier injected.

Since successful exploitation of control-data attacks is becoming harder by
the day, it is reasonable to assume that attackers will change their focus into a
new exploiting technique that will give them as much control as the old ones.
Data-only, or non-control data, attacks fit this description. In non-control data
attacks, the attacker is no longer trying to inject and execute his own code. He
identifies the existing portions of a program that are of interest to him (e.g. the
functions that are allowed to run by an administrator) and he changes the values
of data structures in the program that will enable him to access functionality that
he normally couldn’t (e.g. change the boolean value of a variable that encodes
whether the current user is an administrator). Many of the countermeasures
proposed to mitigate classic control-data attacks cannot detect non-control data
attacks (including the aforementioned Stackguard and DEP).

In this paper we present ValueGuard, a countermeasure specifically geared
towards preventing non-control data attacks. ValueGuard identifies all variables
in the source code of a program and protects each one individually by placing
a random value, a canary, in-front of it. If an attacker uses a buffer-overflow
to change the contents of a variable, he will inevitably overwrite over the ca-
nary before writing into the variable itself. ValueGuard checks the integrity of
a variable’s canary before any expression that uses the value of that variable.
If the canary has been changed, it is a sign of a non-control data attack and
ValueGuard forces the process to terminate, effectively stopping the attack.

Depending on how critical an application is, ValueGuard can be used either
as a testing tool to find vulnerabilities before the actual deployment or as a
run-time protection tool which will detect and stop data-only buffer overflows in
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time. While testing the effectiveness of our system, we discovered a heap-based
buffer overflow vulnerability in the Olden benchmark suite that was previously
unreported.

The rest of this paper is structured as follows. In Section 2 we describe
the different categories of non-control data that an attacker can misuse followed
by an example program vulnerable to a non-control data attack. In Section 3
we present the design of our countermeasure and in Section 4 we give details
concerning our specific implementation. In Sections 5 and 6 we evaluate the
security of ValueGuard and the performance of our prototype. Related work is
discussed in Section 7 and we conclude in Section 8.

2 Data-only or Non-control-data attacks

In this section we present the different data structures that a non-control data
attack may target and we give an example of a program vulnerable to such an
attack.

2.1 Critical Data Structures

Chen et. al [9] were among the first researchers to point out that non-control
data attacks can be as dangerous as control data attacks. In their paper, they ex-
perimented with real-world applications and they showed that an attacker trying
to conduct a non-control data attack, has a number of critical data structures at
his disposal which he can overwrite to compromise a running application. Their
study showed that these data structures can be categorized in four different
types:

Configuration data
Data stored in a process’s memory that was read from e.g. a configuration
file. The process expects this data to be specified by the system adminis-
trator. If an attacker can overwrite such data, the process’s behavior can
change in ways the system administrator could not foresee.

User identity data
Data that identifies a user after e.g. a login, is typically used to enforce access
to resources. If this data is altered, an attacker could impersonate another
user and get unauthorized access to the user’s resources.

User input string
User input validation ensures that user input conforms to the format a pro-
gram expects when handling it. If an attacker manages to change the input
string after it has been validated, then the program will consider the input
safe while it is not.

Decision making data
Overwriting data used to make decisions can obviously have disastrous con-
sequences. Our example attack in Section 2.2 targets decision making data.
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It is clear that at least a subset of these types of data structures is present
in any useful real-world application. While their exploitation is not as straight-
forward as in control-data attacks and the attacker needs to be able to at least
partially understand the semantics of a program, Chen et. al showed that it can
be done. We argue that today, Chen’s observation that “non-control data attacks
are realistic threats” is as relevant as ever. A program which would otherwise
be not exploitable because of the deployed countermeasures may be vulnerable
to a non-control data attack.

2.2 Non-control data attack

1 int main ( int argc , char ∗∗ argv ) {
2 char pass [ 4 0 ] ;
3 int authent i ca ted = 0 ;
4 char b u f f e r [ 3 0 ] ;
5 char ∗p ;
6

7 r eadPassF i l e (PASSFILE , pass , s izeof ( pass ) ) ;
8

9 p r i n t f ( ” Enter password : ” ) ;
10 f g e t s ( bu f f e r , s izeof ( pass ) , s td in ) ;
11

12 i f ( ! strcmp ( bu f f e r , pass ) ) { authent i ca ted = 1 ; }
13

14 i f ( authent i ca ted ) {
15 p r i n t f ( ”Yes !\n” ) ;
16 e x e c l ( ”/ bin / sh” , ” sh” , NULL) ;
17 }
18

19 return 0 ;
20 }

Fig. 1. Example code of a data-only vulnerability.

Consider the program listed in Figure 1. The purpose of the program is to
authenticate a user. If the user supplies the correct password, he is given a shell
else the program exits. The main() function contains a call to the fgets()

function to read a line of text from the user, on line 10. While fgets() is
considered a safe function since its second argument states the maximum number
of characters to be read, the programmer misused the argument and instead of
providing fgets() with the size of buffer, it provided the size of pass. So
fgets() will read up to 40 characters, which is 10 more than the size of buffer.
This is a typical example of a buffer overflow.
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When this program is compiled with stack smashing protection in place ([12,
14, 30]), this vulnerability can not be exploited to initiate a control-data attack.
However, when the buffer variable is overflowed the authenticated variable
is overwritten since the two variables are adjacent on the stack. This variable is
normally set by the program when the authentication was successful. An attacker
could overflow this value and set it to a non-zero value. The program will think
that authentication succeeded, even though it didn’t, and it will execute the
/bin/sh shell.

3 ValueGuard Design

The design of ValueGuard is based on the concepts introduced by StackGuard
and extends them to cover all variables instead of only protecting the return
address. Naturally, this will result in a higher performance overhead, but this
way one can reliably detect bugs or attacks that corrupt only part of the stack
or heap.

During the compilation of a program, the ValueGuard framework rewrites
the source code of the application and encapsulates all variables into protection
structures. A protection structure is implemented as C struct that consists of
two items: the original variable and a canary value. When a variable is allocated,
either on the stack or heap, the canary value is initialized to a random value
that changes on every run of the application. The application is further modified
to detect when every variable is used, and additional canary checks are inserted
accordingly.

Pointer Support An important requirement is to detect changes to variables
that are used indirectly through pointers. Figure 2 shows an application that
complicates the verification of the canary of the ‘important’ variable, because it
is accessed through a pointer. Figure 3 shows the stack contents for the program
during a normal run. If an attacker manages to abuse the call to strcpy to
overwrite the value (and canary) of the ‘important’ variable, this will not be
detected. When the pointer variable ‘p’ is dereferenced, a check will be executed
that verifies the canary of ‘p’ itself, which was unchanged in the attack - Fig. 4.

The source of the problem is that a variable is used through a pointer, with-
out first checking the integrity of the canary in front of that variable. The de-
tection mechanism of ValueGuard solves this by adding checks for each pointer
dereference that looks up and verifies the canary of the dereferenced variable.
This lookup is necessary because the pointers may point to objects that are
un-predictable (or un-decidable) at compile-time.

ValueGuard uses a memory map to store information about all the registered
objects in memory space. When objects are created, they are registered in this
memory map. On each pointer dereference, the corresponding memory object
can be looked up and the associated canary can be verified.
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1 int main ( int argc , char ∗∗ argv ) {
2 int important = 123 ;
3 char b u f f e r [ 8 0 ] ;
4 int ∗p = &important ;
5

6 s t r cpy ( bu f f e r , argv [ 1 ] ) ;
7 p r i n t f ( ”%d\n” , ∗p) ;
8

9 return 0 ;
10 }

Fig. 2. An example that shows how pointer de-references can complicate canary veri-
fication

Fig. 3. Stack during a normal run of the program

Fig. 4. Stack after malicious strcpy()

Compatibility Not all code in a process can be assumed to have been instru-
mented. Code in shared libraries will not be aware of the use of canaries. Value-
Guard, unlike similar countermeasures [16, 4, 15], does not change the represen-
tation of pointers or the calling conventions of functions and thus remains fully
compatible with existing code. This also implies that ValueGuard supports be-
ing used selectively. Developers can choose to protect only (potentially crucial)
parts of an application with ValueGuard, thereby limiting the total overhead.

ValueGuard does not change the layout of structures that are defined by the
programmer, because many programmers rely on the exact layout of objects in
memory. As a result of this, ValueGuard cannot insert canaries in-between the
different fields of a structure. Hence, buffer overflows that corrupt data inside a
single structure are not detected. This is a limitation of most existing defense
mechanisms.
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4 Prototype implementation

4.1 Canaries

Our implementation makes use of the CIL framework ([24]) to transform C-
code. During this transformation, modifications are made to the code through a
custom CIL plugin.

Canaries are implemented as integers that are encapsulated in a struct, to-
gether with the variable they protect. An array of random canary values is ini-
tialized at program start. Each canary is initialized with a value from that table
and the indices into the canary table are determined at compile-time. During
the code transformation, canary verification calls are inserted in front of state-
ments that use protected variables. If a verification fails, the program is forced
to terminate with a segmentation fault.

Several optimizations are introduced to reduce overhead. First, safe variables
are grouped together and protected by a single canary. Safe variables are those
variables whose addresses are never used. Arrays and variables used with the
address operator (&) are therefore unsafe. Second, multiple canary verification
calls can be made in sequence, all verifying the same canaries. These are obvi-
ously grouped together in a single call. Third, verification calls preceded by safe
statements are shifted upwards so that they are grouped. Safe statements are
the kind of statements that do not threaten the integrity of any canaries, for
example assigning the result of a calculation to a variable. Last, safe functions
are not instrumented with extra code. A safe function is one that only uses safe
statements and local variables.

4.2 Memory map

The memory map stores the start addresses of memory objects. For every block
of 2k bytes in the memory space, there is an entry in the memory map that
holds the start address of the memory object it holds. Memory objects must
be aligned to and be a multiple of 2k bytes. To handle registration of memory
objects on the heap, the memory allocator functions malloc, calloc, realloc
and free are overridden with a wrapper. The wrapper functions allocate extra
memory for a canary value, initialize the canary and register the memory object
with the memory map. An extra verification call is inserted in front of every
pointer dereference. The pointer is looked up in the memory map. If it points
to a protected object, the associated canary is verified. Just as for failed regular
canary verification, the process is terminated if the canary can not be verified.

5 Security evaluation

In this section we evaluate the security provided by ValueGuard and we present
cases that show that ValueGuard can detect attacks in real-world scenarios.
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5.1 Effectiveness

ValueGuard’s effectiveness in detecting data-only buffer overflows lies in the
accurate detection of a modified canary. As explained in Section 4 the canary of
each variable is a random integer number chosen at the runtime of the protected
program. In order for an attacker to evade detection while using a buffer overflow
to conduct a non-control data attack, he must be able to restore the canary to its
original contents. This can be done by a) brute-forcing the canary or b) finding
out the value of the canary through a memory leakage attack.

Brute-forcing : When ValueGuard detects a modified canary, it terminates the
running process. This means that for a canary of 4 bytes (standard integer size)
the attacker must make, for the worst-case scenario, 232 attempts before finding
out the correct value. Accordingly, ValueGuard will terminate the process 232−1
times before the attacker succeeding. We believe that a system’s administrator
is likely to notice that an attack is taking place well before the exhaustion of 4
billion attempts.

Memory Leakage : Strackx et. al [33] have shown how certain programming
errors can reveal to the attacker parts of memory that he can use to de-randomize
countermeasures that rely on secret data. While this attack is possible we believe
that its exploitation in the case of ValueGuard is not probable since the attacker
must find the canary for the specific variables that he can overflow and not just
any secret canary. That is because ValueGuard uses multiple canaries and thus
the compromise of one canary doesn’t necessarily lead to a compromise of the
whole countermeasure.

In total, practice shows that the randomness provided by 32 bits of data is
enough to ensure security. While some may argue that bounds-checkers provide
better security guarantees since their detection is not related with random values,
we would like to point out that in our case, ValueGuard will detect overflows
occurred while in third-party code (such as libraries) while bounds-checkers will
not. This is because bounds-checkers can detect overflows only in code that they
have instrumented and thus can’t protect variables when third-party code (such
as external libraries) accesses them. ValueGuard on the other hand, will be able
to detect that an overflow occurred since the variable’s canary will have been
changed regardless of where the overflow happened.

5.2 Real world test

The defense mechanism was tested in the real world at the Hackito Ergo Sum
2010 conference in Paris. During a 3 day period, a hacker wargame was hosted
which contained a program compiled with the described defense mechanism.
The program contained a data-only vulnerability that could lead to a root-
compromise. After the conference, the wargame was moved to the OverTheWire
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([26]) wargame network where it still resides. Despite the numerous attempts,
the program was not exploited.

The techniques used in the attacks were closely observed. We found out that
most attackers un-successfully tried to circumvent the countermeasure by the
means of guessing the values generated by the random number generator.

5.3 Heap overflow in em3d

During the benchmarks, a heap overflow was detected by the defense mecha-
nism in the em3d test of the Olden benchmarks. The overflow occurs in the
initialize graph function in make graph.c: The assignment retval->e nodes[i]

= local node r; is executed for i = 1 to NumNodes where NumNodes is a command-
line parameter, while the e nodes array in retval only has room for a fixed
amount of values (determined by the PROCS constant in em3d.h)

The discovery of this heap overflow in a commonly used benchmark suite like
Olden, is further validation that ValueGuard can detect and stop non-control
data attacks. To our knowledge, no other defense mechanism has detected this
overflow before.

6 Performance evaluation

The extra calls to verify the integrity of canaries, have an impact on runtime and
memory usage. To measure this effect, two benchmark suites were run: Olden
and SPEC CPU2000. All benchmarks were run on Dell GX755 machines with
each an Intel Core 2 Duo CPU (E6850) running at 3.00GHz and 4GB of memory,
running Ubuntu GNU/Linux 8.04 LTS with kernel 2.6.24-27-server.

Each benchmark was compiled with 5 “compilers”:

gcc The GNU C compiler, version 4.2.4 (Ubuntu 4.2.4-1ubuntu4)
cilly Transformation with the CIL driver w/o any modules, compilation with

gcc.
vg baseline

Using the ValueGuard plugin, but with all flags turned off. This is basically
the same as the cilly compiler without any modules.

vg stackdatabss
Using the ValueGuard plugin, but with the memory map disabled. Only the
stack, data and BSS variables are protected.

vg all
Using the full defense mechanism.

Some tests from the two benchmark suits were ommited either because they
were not compatible with the CIL transformation framework or because Value-
Guard detected an overflow (see Section 5.3) and terminated the running test.
The runtime and memory usage results for Olden and SPEC CPU2000 can be
found in Figures 5, 6, 7 and 8.
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gcc cilly vg baseline vg stackdatabss vg all

bh 101.12 (±7.03) 100.24 (±4.97) 100.64 (±5.74) 153.36 (±9.03) 282.00 (±13.10)
bisort 23.63 (±0.21) 23.69 (±0.20) 23.67 (±0.21) 28.40 (±0.27) 43.04 (±0.47)
health 3.40 (±0.10) 3.40 (±0.09) 3.41 (±0.08) 3.80 (±0.09) 10.84 (±0.13)
mst 4.69 (±0.08) 4.70 (±0.07) 4.70 (±0.08) 7.14 (±0.09) 10.52 (±0.16)
perimeter 1.12 (±0.03) 1.06 (±0.03) 1.05 (±0.03) 1.31 (±0.03) 2.15 (±0.04)
treeadd 21.94 (±0.23) 21.84 (±0.07) 24.42 (±0.46) 24.30 (±0.44) 37.68 (±0.49)
tsp 22.76 (±0.10) 22.76 (±0.12) 22.82 (±0.19) 25.27 (±0.11) 29.10 (±0.17)

Average 25.52 25.39 25.82 34.80 59.33

Fig. 5. Olden benchmarks: runtime results in seconds. Lower is better. The values in
between brackets are the standard deviation.

gcc cilly vg baseline vg stackdatabss vg all

bh 70.47 70.49 70.49 70.50 128.79
bisort 128.43 128.44 128.45 128.45 640.48
health 147.25 147.27 147.27 147.27 657.47
mst 312.72 312.74 312.74 312.74 391.51
perimeter 171.09 171.10 171.10 171.10 533.80
treeadd 256.43 256.44 256.44 256.44 1280.51
tsp 320.49 320.51 320.51 320.51 960.58

Average 200.98 201.00 201.00 201.00 656.16

Fig. 6. Olden benchmarks: memory usage in MiB. Lower is better.

gcc cilly vg baseline vg stackdatabss vg all

164.gzip 99.68 (±0.14) 98.07 (±0.17) 98.71 (±0.08) 183.77 (±0.64) 188.83 (±0.28)
181.mcf 55.77 (±0.26) 55.55 (±0.39) 55.43 (±0.05) 91.87 (±0.66) 171.11 (±0.48)
196.parser 1046.60 (±37.57) 1014.33 (±7.62) 1003.64 (±12.64) 1082.86 (±1.37) 1307.27 (±14.65)
254.gap 48.01 (±0.18) 50.62 (±0.21) 49.62 (±0.09) 145.44 (±0.27) 410.74 (±1.01)
256.bzip2 78.45 (±0.19) 78.70 (±0.20) 79.09 (±0.30) 176.36 (±1.43) 277.06 (±0.41)
300.twolf 113.43 (±0.39) 116.52 (±0.12) 116.90 (±0.17) 394.75 (±10.38) 539.25 (±10.25)
177.mesa 89.36 (±0.76) 80.22 (±0.26) 81.41 (±0.95) 120.44 (±0.31) 472.93 (±6.97)
179.art 77.68 (±0.40) 78.06 (±0.26) 77.73 (±0.72) 139.63 (±0.54) 294.25 (±3.31)
183.equake 56.97 (±0.13) 55.95 (±0.02) 56.15 (±0.03) 91.35 (±0.01) 483.01 (±4.62)

Average 185.11 180.89 179.85 269.61 460.50

Fig. 7. SPEC CPU2000 benchmarks: runtime results in seconds. Lower is better. The
values in between brackets are the standard deviation.

When not using the memory map, the results show 25% and 100% average
runtime overhead for the Olden and SPEC CPU2000 benchmarks. The memory
overhead is negligible in this case (0% for Olden, 1% for SPEC CPU2000).

Using the memory map comes at a cost. For the Olden benchmarks, the over-
head increases to 114% and for SPEC CPU2000 it increases to 351% overhead.
Likewise, the memory usage due the memory map increases as well: 238% over-
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gcc cilly vg baseline vg stackdatabss vg all

164.gzip 2712.27 2712.51 2712.52 2713.04 3391.16
181.mcf 232.13 232.19 232.19 232.23 357.70
197.parser 76.62 76.68 76.66 77.07 100.23
254.gap 579.10 579.13 579.13 580.61 728.34
256.bzip2 1666.35 1666.50 1666.52 1666.84 2083.29
300.twolf 12.05 12.09 12.11 12.96 36.09
177.mesa 27.09 27.13 27.14 27.50 46.45
179.art 22.84 22.96 22.96 23.05 39.26
183.equake 125.84 125.90 125.90 125.98 390.69

Average 606.03 606.12 606.13 606.59 797.02

Fig. 8. SPEC CPU2000 benchmarks: memory usage results in MiB. Lower is better.

head for Olden and 79% for SPEC CPU2000. We believe that developers can use
the full version of ValueGuard while testing their applications before deployment
and the basic version (ValueGuard without the memory map) after deployment.
This will allow them to detect and correct as many programming errors as pos-
sible while at development phase where the performance of applications doesn’t
matter. For deployed applications, the basic mode of ValueGuard can be chosen
to protect the running applications with an acceptable performance cost.

7 Related work

Many approaches exist that try and protect against buffer overflow attacks. In
this section we will briefly discuss the most important types of countermeasures.
A more extensive discussion can be found in [38, 13, 37].

7.1 Bounds checkers

[18, 32, 4, 16, 20, 25, 27] is a better solution to buffer overflows, however when im-
plemented for C, it has a severe impact on performance and may cause existing
code to become incompatible with bounds checked code. Recent bounds checkers
[3, 41] have improved performance somewhat, but one major limitation of these
bounds checkers compared to ValueGuard is that they do not detect buffer over-
flows in code that has not been protected even if the data is used in protected
code. ValueGuard will detect changes to data even if it has been overwritten by
unprotected code, as soon as the data is used in protected code.

7.2 Probabilistic countermeasures

Many countermeasures make use of randomness when protecting against attacks.
Canary-based countermeasures [12, 14, 19, 28] use a secret random number that is
stored before an important memory location: if the random number has changed
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after some operations have been performed, then an attack has been detected.
Memory-obfuscation countermeasures [11, 7] encrypt (usually with XOR) im-
portant memory locations or other information using random numbers. Memory
layout randomizers [34, 6, 36, 8] randomize the layout of memory: by loading the
stack and heap at random addresses and by placing random gaps between ob-
jects. Instruction set randomizers [5, 17] encrypt the instructions while in mem-
ory and will decrypt them before execution.

While our approach is also probabilistic, it is aimed at protecting locations
from non-control-data attacks, while most of the above approaches are aimed
at protecting either control data or preventing the attacker from injecting code,
neither of which are useful for non-control data attacks.

An exception is DSR [7], which protects against non-control-data attacks but
requires that all code is aware of the data obfuscation, hindering the use of third
party libraries.

7.3 Separation and replication of information

Countermeasures that rely on separation or replication of information will try
to replicate valuable control-flow information [35, 10] or will separate this in-
formation from regular data [39, 40]. This makes it harder for an attacker to
overwrite this information using an overflow. Some countermeasures will simply
copy the return address from the stack to a separate stack and will compare it
to or replace the return addresses on the regular stack before returning from a
function. These countermeasures are easily bypassed using indirect pointer over-
writing where an attacker overwrites a different memory location instead of the
return address by using a pointer on the stack. More advanced techniques try to
separate all control-flow data (like return addresses and pointers) from regular
data, making it harder for an attacker to use an overflow to overwrite this type
of data [40].

While these techniques can efficiently protect against buffer overflows that try
to overwrite control-flow information, they do not protect against non-control-
data attacks.

7.4 Runtime enforcement of static analysis results

In this section we describe two countermeasures that provide runtime enforce-
ment of results of static analysis.

Control-flow integrity [1] determines a program’s control flow graph before-
hand and ensures that the program adheres to it. It does this by assigning a
unique ID to each possible control flow destination of a control flow transfer.
Before transferring control flow to such a destination, the ID of the destination
is compared to the expected ID, and if they are equal, the program proceeds as
normal. This approach, while strong, does not protect against non-control data
attacks.

WIT [2] discusses a very efficient technique to check whether instructions
write to valid memory location. Their technique is based on static analysis that
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does a points-to analysis of the application. This analysis is then used to assign
colors to memory locations and instructions. Each instruction has the same color
as the objects it writes to. Then runtime checks are added to ensure that these
colors are the same. This prevents instructions from writing to memory that they
cannot normally write to. This technique depends on a static points-to analysis,
which can result in false negatives where an instruction is determined to be safe
when it is not or it can assign an instruction or object a color that allows an
unsafe instruction access to the object. Also, static alias analysis could confuse
objects, allowing instructions access to multiple objects.

8 Conclusion

The increased difficulty of reliably exploiting control data attacks in modern op-
erating systems is likely to shift the attention of attackers to other attack vectors.
We believe that data-only attacks is such a vector since its successful exploita-
tion can provide the attacker with as much leverage as traditional control-data
attacks.

In this paper we presented ValueGuard, a countermeasure for data-only at-
tacks caused by buffer overflows. ValueGuard’s detection technique consists of
inserting canary values in front of all memory objects and verifying them when
the objects are used. Our countermeasure operates on the source code level and
does not require any modifications to the target platform. In addition, Value-
Guard can be used either as a testing tool by developers before deployment of
an application or as a run-time protection monitor for critical applications.

Using ValueGuard we found a previously unreported buffer overflow in the
Olden benchmark suite and we showed that ValueGuard can detect and stop
data-only attacks that many other generic countermeasures cannot.
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